SLLN for Total Claim Process
> library(VGAM) |
> cols <- rainbow(10) > plot.new() > for (i in 1:10) { + n <- 1000 + claims <- rexp(n) + arrivals <- cumsum(rexp(n)) + df <- cbind(cumsum(claims), arrivals) + plot(df[, 1]/df[, 2], type = "l", xlim = c(0, 1000), col = cols[i], ylim = c(0, + 2), ylab = "S(t)/t") + par(new = T) + } > par(new = F) |
The above distribution uses an exponential claim size distribution and standard homogeneous poisson process.
> cols <- rainbow(10) > plot.new() > for (i in 1:10) { + n <- 1000 + claims <- rpareto(n, 2, 4) + arrivals <- cumsum(rexp(n)) + df <- cbind(cumsum(claims), arrivals) + plot(df[, 1]/df[, 2], type = "l", xlim = c(0, 1000), col = cols[i], ylim = c(0, + 6), ylab = "S(t)/t") + par(new = T) + } > par(new = F) |
The above distribution uses an pareto claim size distribution and standard homogeneous poisson process.
As one can see that the SLLN holds good.