> library(VGAM)
> cols <- rainbow(10)
> plot.new()
> for (i in 1:10) {
+     n <- 1000
+     claims <- rexp(n)
+     arrivals <- cumsum(rexp(n))
+     df <- cbind(cumsum(claims), arrivals)
+     plot(df[, 1]/df[, 2], type = "l", xlim = c(0, 1000), col = cols[i], ylim = c(0,
+         2), ylab = "S(t)/t")
+     par(new = T)
+ }
> par(new = F)

st_over_t-002.jpg

The above distribution uses an exponential claim size distribution and standard homogeneous poisson process.

> cols <- rainbow(10)
> plot.new()
> for (i in 1:10) {
+     n <- 1000
+     claims <- rpareto(n, 2, 4)
+     arrivals <- cumsum(rexp(n))
+     df <- cbind(cumsum(claims), arrivals)
+     plot(df[, 1]/df[, 2], type = "l", xlim = c(0, 1000), col = cols[i], ylim = c(0,
+         6), ylab = "S(t)/t")
+     par(new = T)
+ }
> par(new = F)

st_over_t-003.jpg

The above distribution uses an pareto claim size distribution and standard homogeneous poisson process.

As one can see that the SLLN holds good.