Chapter 4 Section 4
Purpose
If a random walk starts from y = 2 with p as 0.3 and q as 0.7, whats the prob that the walk hits 0 ?
> p <- 0.2 > q <- 1 - p > n <- 100 > a <- 20 > z <- cumsum(sample(c(1, -1), n, prob = c(p, q), replace = T)) + + a > plot(z, type = "l") > abline(h = a, col = "blue", lty = "dashed") > abline(h = 0, col = "red", lty = "solid") |
> p <- 0.54 > q <- 1 - p > n <- 1000 > a <- 1 > set.seed(1977) > counter <- 0 > i <- 1 > N <- 10000 > for (i in 1:N) { + z <- cumsum(sample(c(1, -1), n, prob = c(p, q), replace = T)) + + a + z.ind <- which(z == 0) + if (length(z.ind) > 0) { + counter <<- counter + 1 + } + } > print(counter/N) [1] 0.8529 |
The above simulation matches with 0.851851851851852 The key lesson to be learnt is that the zero hitting time depends on the probabilities p and q.