Markov Chain Chap 9 - 9
Purpose
Chapter 9 Problem 11
> Q <- matrix(data = NA, nrow = 4, ncol = 4) > Q[1, ] <- c(0, 1/4, 1/4, 1/4) > Q[2, ] <- c(0, 0, 1/3, 1/3) > Q[3, ] <- c(0, 0, 0, 1/2) > Q[4, ] <- c(0, 0, 0, 0) > N <- solve(diag(4) - Q) > C <- c(1, 1, 1, 1) > R <- matrix(data = NA, nrow = 4, ncol = 1) > R[, 1] <- c(1/4, 1/3, 1/2, 1) > N1 <- N > NC1 <- N %*% C > NR1 <- N %*% R > N1 [,1] [,2] [,3] [,4] [1,] 1 0.25 0.3333333 0.5 [2,] 0 1.00 0.3333333 0.5 [3,] 0 0.00 1.0000000 0.5 [4,] 0 0.00 0.0000000 1.0 > NC1 [,1] [1,] 2.083333 [2,] 1.833333 [3,] 1.500000 [4,] 1.000000 > NR1 [,1] [1,] 1 [2,] 1 [3,] 1 [4,] 1 |
It is no surprise that probability of reaching the absorbtion state is 1 irrespective of where you start from
Also the expected number of steps decreases as you go near the absorbtion status