Lebesgue Integrable or not
5.4.4.1
> x <- seq(0.01, 1, 0.005) > z1 <- data.frame(x = x, y = 0) > n <- 1 > for (n in 1:1000) { + condition <- x < 1/sqrt(n) & x > 1/sqrt(n + 1) + z1[condition, 2] <- z1[condition, 1] * (n^(0.49) * ((-1)^(n + + 1))) + } > z2 <- data.frame(x = x, y = 0) > n <- 1 > for (n in 1:1000) { + condition <- x < 1/sqrt(n) & x > 1/sqrt(n + 1) + z2[condition, 2] <- z2[condition, 1] * (n^(0.5) * ((-1)^(n + + 1))) + } > par(mfrow = c(1, 1)) > plot(z1[, 1], z1[, 2], type = "l", col = "blue", lwd = 1.2, main = "", + xlim = c(0, 1), ylim = c(-1, 1), xlab = "", ylab = "") > par(new = T) > plot(z2[, 1], z2[, 2], type = "l", col = "red", , lwd = 1.2, + main = "Lebesgue Integrable(f1) Vs Not Lebesgue Integrable(f2)", + xlim = c(0, 1), ylim = c(-1, 1), xlab = "X", ylab = "Y") > legend("bottomright", legend = c("f1", "f2"), fill = c("blue", + "red")) |
Absolute value of function
> x <- seq(0.001, 1, 1e-04) > z1 <- data.frame(x = x, y = 0) > n <- 1 > for (n in 1:1000) { + condition <- x < 1/sqrt(n) & x > 1/sqrt(n + 1) + z1[condition, 2] <- z1[condition, 1] * (n^(0.49)) + } > z2 <- data.frame(x = x, y = 0) > n <- 1 > for (n in 1:1000) { + condition <- x < 1/sqrt(n) & x > 1/sqrt(n + 1) + z2[condition, 2] <- z2[condition, 1] * (n^(0.5)) + } > par(mfrow = c(1, 1)) > plot(z1[, 1], z1[, 2], type = "l", col = "blue", lwd = 1.2, main = "", + xlim = c(0, 1), ylim = c(0, 1), xlab = "", ylab = "") > par(new = T) > plot(z2[, 1], z2[, 2], type = "l", col = "red", , lwd = 1.2, + main = "Lebesgue Integrable(f1) Vs Not Lebesgue Integrable(f2)", + xlim = c(0, 1), ylim = c(0, 1), xlab = "X", ylab = "Y") > legend("bottomright", legend = c("f1", "f2"), fill = c("blue", + "red")) |
The red function is not lebesgue integrable while blue one is lebesgue integrable
Exploring blue function as a sequence of functions
> x <- seq(0.001, 1, 1e-04) > z1 <- data.frame(matrix(data = NA, ncol = 21, nrow = length(x))) > z1[, 1] <- x > n <- 20 > for (n in 1:20) { + condition <- x < 1/sqrt(n) & x > 1/sqrt(n + 1) + z1[condition, (n + 1)] <- z1[condition, 1] * (n^(0.49)) + } > par(mfrow = c(1, 1)) > plot.new() > cols <- rainbow(21) > for (n in 2:20) { + par(new = T) + plot(z1[, 1], z1[, n], type = "l", col = cols[n], lwd = 1.2, + main = "", xlim = c(0, 1), ylim = c(0.6, 1), xlab = "", + ylab = "") + } > legend("bottomleft", legend = 1:20, fill = cols, cex = 0.6) |
Hence write the function as sequence of summands Flip the integral and sum sign and use MCT..