Bressound II - 1.1
Fourier Series Exp
f(x) = x
> x <- seq(-pi, pi, 0.01) > y <- matrix(data = NA, ncol = 100, nrow = length(x)) > for (i in 1:ncol(y)) { + temp <- sin(i * x) * 2/i * (-1)^(i + 1) + if (i > 1) { + y[, i] <- y[, (i - 1)] + temp + } + else { + y[, i] <- temp + } + } > cols <- rainbow(30) > par(mfrow = c(1, 1)) > plot.new() > plot(x, x, ylim = c(-pi, pi), pch = 19, xlim = c(-pi, pi), col = "red") > par(new = T) > i <- 1 > for (i in 1:30) { + plot(x, y[, i], col = cols[i], ylim = c(-pi, pi), type = "l", + lty = "solid", xlim = c(-pi, pi)) + par(new = T) + } > par(new = F) |
Fourier Series Convergence
for n = seq(3,27,3)
> cols <- rainbow(9) > par(mfrow = c(3, 3)) > i <- 1 > for (i in 1:9) { + plot(x, x, ylim = c(-pi, pi), pch = 19, xlim = c(-pi, pi), + col = "red", main = 3 * i) + par(new = T) + plot(x, y[, (3 * i)], col = cols[i], ylim = c(-pi, pi), pch = 19, + xlim = c(-pi, pi)) + par(new = F) + } |
f(x) = x^2
> x <- seq(-pi, pi, 0.01) > y <- matrix(data = NA, ncol = 100, nrow = length(x)) > for (i in 1:ncol(y)) { + temp <- cos(i * x) * (4/(i^2)) * (-1)^(i) + if (i > 1) { + y[, i] <- y[, (i - 1)] + temp + } + else { + y[, i] <- temp + pi^2/3 + } + } > cols <- rainbow(4) > par(mfrow = c(2, 2)) > i <- 1 > for (i in 1:4) { + plot(x, x^2, ylim = c(0, pi^2), pch = 19, xlim = c(-pi, pi), + col = "red", main = 3 * i) + par(new = T) + plot(x, y[, (3 * i)], col = cols[i], ylim = c(0, pi^2), pch = 19, + xlim = c(-pi, pi)) + par(new = F) + } |