Bressound Exercise 5.3
Purpose
To work out exercise from 5.3
> xs <- c(pi/6, pi/4, pi/2) > n <- 1:1000 > x <- xs[1] > z1 <- cumsum(x^2 * sin(x)/((1 + n * x * x) * (1 + x * x * (n - + 1)))) > x <- xs[2] > z2 <- cumsum(x^2 * sin(x)/((1 + n * x * x) * (1 + x * x * (n - + 1)))) > x <- xs[3] > z3 <- cumsum(x^2 * sin(x)/((1 + n * x * x) * (1 + x * x * (n - + 1)))) > par(mfrow = c(2, 2)) > plot(n, z1, col = "blue") > plot(n, z2, col = "blue") > plot(n, z3, col = "blue") |
Converges at all the points
> xs <- seq(-pi, pi, 0.01) > n <- 3 > z1 <- cumsum(n * xs^2 * sin(xs)/(1 + n * xs * xs)) > n <- 6 > z2 <- cumsum(n * xs^2 * sin(xs)/(1 + n * xs * xs)) > n <- 9 > z3 <- cumsum(n * xs^2 * sin(xs)/(1 + n * xs * xs)) > n <- 12 > z4 <- cumsum(n * xs^2 * sin(xs)/(1 + n * xs * xs)) > par(mfrow = c(2, 2)) > plot(xs, z1, col = "blue") > plot(xs, z2, col = "blue") > plot(xs, z3, col = "blue") > plot(xs, z4, col = "blue") |
> par(mfrow = c(1, 1)) > cols <- rainbow(4) > plot(xs, z1, col = cols[1], ylim = c(-200, 0)) > par(new = T) > plot(xs, z2, col = cols[2], ylim = c(-200, 0)) > par(new = T) > plot(xs, z3, col = cols[3], ylim = c(-200, 0)) > par(new = T) > plot(xs, z4, col = cols[4], ylim = c(-200, 0)) |
> xs <- seq(-pi, pi, 0.01) > n <- 3 > z1 <- cumsum(n * xs^2 * sin(xs)/(1 + n * xs * xs)) > n <- 60 > z2 <- cumsum(n * xs^2 * sin(xs)/(1 + n * xs * xs)) > n <- 900 > z3 <- cumsum(n * xs^2 * sin(xs)/(1 + n * xs * xs)) > n <- 1200 > z4 <- cumsum(n * xs^2 * sin(xs)/(1 + n * xs * xs)) > n <- 12000 > z4 <- (n * xs^2 * sin(xs)/(1 + n * xs * xs)) |
> par(mfrow = c(1, 1)) > cols <- rainbow(4) > plot(xs, z1, col = cols[1], ylim = c(-200, 0)) > par(new = T) > plot(xs, z2, col = cols[2], ylim = c(-200, 0)) > par(new = T) > plot(xs, z3, col = cols[3], ylim = c(-200, 0)) > par(new = T) > plot(xs, z4, col = cols[4]) > plot(xs, sin(xs), col = cols[4]) > plot(xs, sin(xs)/xs, col = cols[4]) |
> epsilon <- 0.5 > plot(xs, (1 - epsilon)/(epsilon * xs * xs)) |