> folder <- "C:/Cauldron/garage/R/soulcraft/Data/Pairs/"
> rdata <- read.csv(paste(folder, "bhavcopy.csv", sep = ""), header = T)
> rdata <- rdata[rdata$SERIES == "EQ", ]
> round(quantile(rdata$CLOSE/(1), probs = seq(0, 1, 0.1)))
  0%  10%  20%  30%  40%  50%  60%  70%  80%  90% 100%
   0   18   36   55   82  120  163  244  380  716 8626

50 pct of stocks < 120 bucks 80 pct of stocks < 380 bucks max value is about 8626 bucks

> library(ggplot2)
> rdata1 <- rdata[rdata$TOTTRDVAL/(1e+07) > 90, ]
> rdata1 <- rdata1[order(rdata1$TOTTRDVAL, decreasing = T), ]
> rdata1$TOTTRDVAL <- rdata1$TOTTRDVAL/1e+07
> rdata1$SYMBOLF <- factor(rdata1$SYMBOL, levels = rdata1$SYMBOL)
> p <- ggplot(rdata1, aes(y = factor(SYMBOLF), x = TOTTRDVAL))
> q <- p + geom_point()
> q <- q + scale_x_continuous("Total Traded Value('00 Cr)")
> q <- q + scale_y_discrete("")
> q

BhavcopyAnalysis-003.jpg

> round(quantile(rdata$TOTTRDVAL/(1e+07), probs = seq(0, 1, 0.05)))
  0%   5%  10%  15%  20%  25%  30%  35%  40%  45%  50%  55%  60%  65%  70%  75%
   0    0    0    0    0    0    0    0    0    0    1    1    1    2    3    4
 80%  85%  90%  95% 100%
   8   14   26   64  648

50 percent of the stocks have less than 1 crore trading value 80 percent of the stocks have trades less than 8 crore trading value 95 percent of the stocks have trades less than 64 crore trading value Max trading volume is about 648 crore