WPI Growth
Purpose
Check WPI numbers
Plotting the raw WPI
> library(ggplot2) > file <- "C:/Cauldron/Benchmark/PMS/LifeCycleFund/wpi.csv" > wpi <- read.csv(file, header = T, stringsAsFactors = F) > wpi$date <- as.Date(wpi$Date, format = "%d-%m-%Y") > wpi <- wpi[, c("date", "WPI")] > p <- ggplot(wpi, aes(x = date, y = WPI)) + scale_x_date() > q <- p + geom_line(colour = "blue", lwd = 0.9) > q <- q + scale_x_date(major = "years") > q <- q + scale_y_continuous("WPI") > q <- q + opts(title = "Wholesale Price Index") > print(q) |
Plotting the annualized wpi growth rate
> annualized.returns <- function(x) { + n <- length(x) + (x[n] - x[1])/x[1] + } > wpi.xts <- xts(wpi$WPI, wpi$date) > wpi.roll <- rollapply(wpi.xts[, 1], width = 13, annualized.returns, + align = "right") > wpi.roll.df <- as.data.frame(wpi.roll) > wpi.roll.df$date <- as.Date(rownames(wpi.roll.df)) > p <- ggplot(wpi.roll.df, aes(x = date, y = wpi.roll * 100)) + + scale_x_date() > q <- p + geom_line(colour = "blue", lwd = 0.9) > q <- q + scale_x_date(major = "years") > q <- q + scale_y_continuous(" Growth Rate") > q <- q + opts(title = "Wholesale Price Index") > print(q) > median(wpi.roll.df[, 1]) [1] 0.05122276 |
The median for the growth rates is about 5.12 percent
If inflation is about 5.12 percent , then it takes about 5 years to reduce your net worth by 25 percent. This has to be factored in the investments.