Distributions- Chap 4
Purpose
Estimation of GLM from Annette Hobson’s book
Data Preparation
> setwd("C:/Cauldron/garage/R/soulcraft/Volatility/Learn/Dobson-GLM") > x <- read.csv("test6.csv", header = T, stringsAsFactors = F) > hist(x[, 1], col = "blue", breaks = seq(0, 18000, 1000)) |
> setwd("C:/Cauldron/garage/R/soulcraft/Volatility/Learn/Dobson-GLM") > x <- read.csv("test6.csv", header = T, stringsAsFactors = F) > hist(x[, 1], col = "blue", breaks = seq(0, 18000, 1000)) |
Fitting Weibull in R
> z <- fitdistr(x[, 1], "weibull") > print(z) shape scale 2.039199e+00 1.020161e+04 (2.392952e-01) (7.653752e+02) |
For shape parameter with 3 to 11
> par(mfrow = c(3, 3)) > for (i in 1:9) { + z1 <- rweibull(1000, z$estimate[1] + i, z$estimate[2]) + hist(z1, main = round(z$estimate[1] + i, 2)) + } |
For shape parameter close to 2 to 0
> par(mfrow = c(3, 3)) > for (i in 1:9) { + z1 <- rweibull(1000, z$estimate[1] - i * 0.2, z$estimate[2]) + hist(z1, main = round(z$estimate[1] - i * 0.2, 2)) + } |