Confirmatory Analysis
Purpose
Confirmatory Analysis
Perform Unit Root with H0 - Unit Root HA - No Unit Root
Perform KPSS with H0- Stationary HA - Non Stationary
Then check for how many pairs do both the test give the same result.
> sector.tests <- samesector > sector.tests$uroot <- 0 > sector.tests$kpss <- 0 > npairs <- dim(samesector)[1] > pair <- 1 > x <- c(0, 0, 0, 0) > for (pair in 1:npairs) { + print(pair) + a <- samesector[pair, "tickeri"] + b <- samesector[pair, "tickerj"] + y1 <- (security.db1[, a]) + x1 <- (security.db1[, b]) + temp1 <- (grangertest(y1 ~ x1, order = 1))[2, 4] + if (temp1 < 0.1) { + y1 <- (security.db1[, a]) + x1 <- (security.db1[, b]) + fit.1 <- lm(y1 ~ x1 + 0) + error <- residuals(fit.1) + time <- 1:length(error) + fit.2 <- lm(error ~ time) + if (coef(summary(fit.2))[1, 4] > 0.05 & coef(summary(fit.2))[2, + 4] > 0.05) { + type.1 <- "nc" + type.2 <- "mu" + error.transf <- error + x[1] <- x[1] + 1 + } + if (coef(summary(fit.2))[1, 4] < 0.05 & coef(summary(fit.2))[2, + 4] < 0.05) { + type.1 <- "ct" + type.2 <- "tau" + error.transf <- resid(fit.2) + x[2] <- x[2] + 1 + } + if (coef(summary(fit.2))[1, 4] < 0.05 & coef(summary(fit.2))[2, + 4] > 0.05) { + type.1 <- "c" + type.2 <- "mu" + error.transf <- error - mean(error) + x[3] <- x[3] + 1 + } + if (coef(summary(fit.2))[1, 4] > 0.05 & coef(summary(fit.2))[2, + 4] < 0.05) { + type.1 <- "c" + type.2 <- "mu" + error.transf <- error + x[4] <- x[4] + 1 + } + t1 <- unitrootTest(error.transf, lags = 1, type = "ct")@test$p.value[1] + kpfit <- urkpssTest(error.transf, type.2, "short", doplot = F) + if (kpfit@test$test@teststat > kpfit@test$test@cval[2]) { + t2 <- 1 + } + else { + t2 <- 0 + } + sector.tests$uroot[pair] <- t1 + sector.tests$kpss[pair] <- t2 + } + temp2 <- (grangertest(x1 ~ y1, order = 1))[2, 4] + if (temp1 > 0.1 & temp2 < 0.1) { + y1 <- (security.db1[, b]) + x1 <- (security.db1[, a]) + fit.1 <- lm(y1 ~ x1 + 0) + error <- residuals(fit.1) + time <- 1:length(error) + fit.2 <- lm(error ~ time) + if (coef(summary(fit.2))[1, 4] > 0.05 & coef(summary(fit.2))[2, + 4] > 0.05) { + type.1 <- "nc" + type.2 <- "mu" + error.transf <- error + x[1] <- x[1] + 1 + } + if (coef(summary(fit.2))[1, 4] < 0.05 & coef(summary(fit.2))[2, + 4] < 0.05) { + type.1 <- "ct" + type.2 <- "tau" + error.transf <- resid(fit.2) + x[2] <- x[2] + 1 + } + if (coef(summary(fit.2))[1, 4] < 0.05 & coef(summary(fit.2))[2, + 4] > 0.05) { + type.1 <- "c" + type.2 <- "mu" + error.transf <- error - mean(error) + x[3] <- x[3] + 1 + } + if (coef(summary(fit.2))[1, 4] > 0.05 & coef(summary(fit.2))[2, + 4] < 0.05) { + type.1 <- "c" + type.2 <- "mu" + error.transf <- error + x[4] <- x[4] + 1 + } + t1 <- unitrootTest(error.transf, lags = 1, type = type.1)@test$p.value[1] + kpfit <- urkpssTest(error.transf, type.2, "short", doplot = F) + if (kpfit@test$test@teststat > kpfit@test$test@cval[2]) { + t2 <- 1 + } + else { + t2 <- 0 + } + sector.tests$uroot[pair] <- t1 + sector.tests$kpss[pair] <- t2 + } + if (temp1 > 0.1 & temp2 > 0.1) { + sector.tests$uroot[pair] <- 999 + sector.tests$kpss[pair] <- 999 + } + } > categories <- x |
> categories [1] 12 155 0 3 |
Take away :
Most of the series which show cointegration seem to be having a trend component as 155 pairs have a significant coefficient for time
> test <- sector.tests[sector.tests$uroot != 999, ] > x <- as.data.frame(cbind(test$uroot, test$kpss)) > x$ustat <- ifelse(x[, 1] < 0.05, 0, 1) > colnames(x) <- c("uroot", "kpss.status", "uroot.status") > table(x$uroot.status, x$kpss.status) 0 1 0 10 41 1 6 113 |
Takeaway
The above result is pretty depressing as it shows that 113 pairs for which Unit Root H0 holds good , KPSS Ha holds good. Basically they confirm the same thing. They are non stationary
10 pairs for which Unit Root Ha holds good , KPSS Ho holds good. Basically they confirm the same thing. They are stationary
Now comes the troublesome part 41 pairs for which Unit Root Ha holds good , KPSS Ha holds good. Basically do not concur
6 pairs for which Unit Root Ho holds good , KPSS Ho holds good. Basically do not concur.
Out of the 313 pairs , only 170 showed granger causality. Out of 170 pairs, only 10 concur with stationarity and dickey fuller test
- Does that mean there are only 10 pairs that can be tradable ?