KPSS & Unit Root
Purpose
For all the 313 pairs see whether kpss and unit root test
> sector.tests <- samesector > sector.tests$uroot <- 0 > sector.tests$kpss <- 0 > npairs <- dim(samesector)[1] > pair <- 1 > for (pair in 1:npairs) { + a <- samesector[pair, "tickeri"] + b <- samesector[pair, "tickerj"] + y1 <- (security.db1[, a]) + x1 <- (security.db1[, b]) + temp1 <- (grangertest(y1 ~ x1, order = 1))[2, 4] + if (temp1 < 0.05) { + y1 <- (security.db1[, a]) + x1 <- (security.db1[, b]) + fit.1 <- lm(y1 ~ x1 + 0) + error <- residuals(fit.1) + time <- 1:length(error) + fit.2 <- lm(error ~ time) + if (coef(summary(fit.2))[1, 4] > 0.05 & coef(summary(fit.2))[2, + 4] > 0.05) { + type.1 <- "nc" + type.2 <- "mu" + error.transf <- error + } + if (coef(summary(fit.2))[1, 4] < 0.05 & coef(summary(fit.2))[2, + 4] < 0.05) { + type.1 <- "ct" + type.2 <- "tau" + error.transf <- resid(fit.2) + } + if (coef(summary(fit.2))[1, 4] < 0.05 & coef(summary(fit.2))[2, + 4] > 0.05) { + type.1 <- "c" + type.2 <- "mu" + error.transf <- error - mean(error) + } + if (coef(summary(fit.2))[1, 4] > 0.05 & coef(summary(fit.2))[2, + 4] < 0.05) { + type.1 <- "c" + type.2 <- "mu" + error.transf <- error + } + t1 <- unitrootTest(error.transf, lags = 1, type = "ct")@test$p.value[1] + kpfit <- urkpssTest(error.transf, type.2, "short") + if (kpfit@test$test@teststat > kpfit@test$test@cval[2]) { + t2 <- 1 + } + else { + t2 <- 0 + } + sector.tests$uroot[pair] <- t1 + sector.tests$kpss[pair] <- t2 + } + temp2 <- (grangertest(x1 ~ y1, order = 1))[2, 4] + if (temp1 > 0.05 & temp2 < 0.05) { + y1 <- (security.db1[, b]) + x1 <- (security.db1[, a]) + fit.1 <- lm(y1 ~ x1 + 0) + error <- residuals(fit.1) + time <- 1:length(error) + fit.2 <- lm(error ~ time) + if (coef(summary(fit.2))[1, 4] > 0.05 & coef(summary(fit.2))[2, + 4] > 0.05) { + type.1 <- "nc" + type.2 <- "mu" + error.transf <- error + } + if (coef(summary(fit.2))[1, 4] < 0.05 & coef(summary(fit.2))[2, + 4] < 0.05) { + type.1 <- "ct" + type.2 <- "tau" + error.transf <- resid(fit.2) + } + if (coef(summary(fit.2))[1, 4] < 0.05 & coef(summary(fit.2))[2, + 4] > 0.05) { + type.1 <- "c" + type.2 <- "mu" + error.transf <- error - mean(error) + } + if (coef(summary(fit.2))[1, 4] > 0.05 & coef(summary(fit.2))[2, + 4] < 0.05) { + type.1 <- "c" + type.2 <- "mu" + error.transf <- error + } + t1 <- unitrootTest(error.transf, lags = 1, type = type.1)@test$p.value[1] + kpfit <- urkpssTest(error.transf, type.2, "short") + if (kpfit@test$test@teststat > kpfit@test$test@cval[2]) { + t2 <- 1 + } + else { + t2 <- 0 + } + sector.tests$uroot[pair] <- t1 + sector.tests$kpss[pair] <- t2 + } + if (temp1 > 0.05 & temp2 > 0.05) { + sector.tests$uroot[pair] <- 999 + sector.tests$kpss[pair] <- 999 + } + } |
What the above script does is : . For the pairs which pass granger test, check for stationarity and unit root test simulataneously
> test <- sector.tests[sector.tests$uroot != 999, ] > dim(test) [1] 127 12 |
Out of 313, there are about 127 pairs for which there is no granger causality
> length(which(test$kpss == 1)) [1] 113 |
Out of 127 pairs, there are about , 113 pairs which pass stationarity tests
> length(which(test$uroot < 0.05)) [1] 44 |
Out of 127 pairs, there are about 44 pairs which fail unit root tests
> length(which(test$uroot < 0.05 & test$kpss == 1)) [1] 35 |
Out of 127 pairs, there are about 35 pairs ,
which fail unit root tests and pass stationarity tests.
However there is one thing which is problematic with the above approach. The final pairs are
> test <- sector.tests[sector.tests$uroot < 0.05 & sector.tests$kpss == + 1, ] > as.data.frame(paste(test$tickeri, test$tickerj, sep = "-")) if (stringsAsFactors) factor(x) else x 1 AMBUJACEM-ACC 2 DIVISLAB-CIPLA 3 GAIL-CAIRN 4 GESHIP-CONCOR 5 GSPL-BPCL 6 IBREALEST-DLF 7 ICICIBANK-AXISBANK 8 IDBI-BANKINDIA 9 IDFC-HDFC 10 JPASSOCIAT-IVRCLINFRA 11 LICHSGFIN-IDFC 12 NAGARCONST-JPASSOCIAT 13 NAGARCONST-LITL 14 NAGARCONST-HCC 15 RECLTD-HDFC 16 RECLTD-PFC 17 RELCAPITAL-INDIAINFO 18 RELCAPITAL-IFCI 19 RELIANCE-IOC 20 RNRL-MRPL 21 ROLTA-POLARIS 22 ROLTA-HCLTECH 23 SUNPHARMA-DIVISLAB 24 SUNPHARMA-LUPIN 25 TTML-MTNL 26 ULTRACEMCO-AMBUJACEM 27 UNIONBANK-PNB 28 UNITECH-IBREALEST 29 VIJAYABANK-IDBI 30 WIPRO-INFOSYSTCH 31 DRREDDY-CIPLA 32 DRREDDY-DIVISLAB 33 FINANTECH-ROLTA 34 PATNI-HCLTECH 35 PATNI-POLARIS |
- By using Chris Brooks procedure 9 pairs have been eliminated as they did not show stationarity . The following pairs have been removed
> test <- sector.tests[sector.tests$uroot < 0.05 & sector.tests$kpss == + 0, ] > as.data.frame(paste(test$tickeri, test$tickerj, sep = "-")) if (stringsAsFactors) factor(x) else x 1 BANKINDIA-ANDHRABANK 2 GTOFFSHORE-ABAN 3 INDHOTEL-HOTELEELA 4 IOC-CAIRN 5 SBIN-BANKINDIA 6 SCI-GESHIP 7 SCI-CONCOR 8 DRREDDY-RANBAXY 9 PATNI-ROLTA |