Purpose
Does Augmented ADF solve the problem where residuals can be correlated ?

I am going to run the same code and include higher order lags and see how many of them are stationary ?

> sector.tests <- samesector
> sector.tests$uroot <- 0
> sector.tests$kpss <- 0
> npairs <- dim(samesector)[1]
> pair <- 1
> for (pair in 1:npairs) {
+     print(pair)
+     a <- samesector[pair, "tickeri"]
+     b <- samesector[pair, "tickerj"]
+     y1 <- (security.db1[, a])
+     x1 <- (security.db1[, b])
+     temp1 <- (grangertest(y1 ~ x1, order = 1))[2, 4]
+     if (temp1 < 0.05) {
+         y1 <- (security.db1[, a])
+         x1 <- (security.db1[, b])
+         fit.1 <- lm(y1 ~ x1 + 0)
+         error <- residuals(fit.1)
+         time <- 1:length(error)
+         fit.2 <- lm(error ~ time)
+         if (coef(summary(fit.2))[1, 4] > 0.05 & coef(summary(fit.2))[2,
+             4] > 0.05) {
+             type.1 <- "nc"
+             type.2 <- "mu"
+             error.transf <- error
+         }
+         if (coef(summary(fit.2))[1, 4] < 0.05 & coef(summary(fit.2))[2,
+             4] < 0.05) {
+             type.1 <- "ct"
+             type.2 <- "tau"
+             error.transf <- resid(fit.2)
+         }
+         if (coef(summary(fit.2))[1, 4] < 0.05 & coef(summary(fit.2))[2,
+             4] > 0.05) {
+             type.1 <- "c"
+             type.2 <- "mu"
+             error.transf <- error - mean(error)
+         }
+         if (coef(summary(fit.2))[1, 4] > 0.05 & coef(summary(fit.2))[2,
+             4] < 0.05) {
+             type.1 <- "c"
+             type.2 <- "mu"
+             error.transf <- error
+         }
+         t1 <- unitrootTest(error.transf, lags = 4, type = "ct")@test$p.value[1]
+         kpfit <- urkpssTest(error.transf, type.2, "short")
+         if (kpfit@test$test@teststat > kpfit@test$test@cval[2]) {
+             t2 <- 1
+         }
+         else {
+             t2 <- 0
+         }
+         sector.tests$uroot[pair] <- t1
+         sector.tests$kpss[pair] <- t2
+     }
+     temp2 <- (grangertest(x1 ~ y1, order = 1))[2, 4]
+     if (temp1 > 0.05 & temp2 < 0.05) {
+         y1 <- (security.db1[, b])
+         x1 <- (security.db1[, a])
+         fit.1 <- lm(y1 ~ x1 + 0)
+         error <- residuals(fit.1)
+         time <- 1:length(error)
+         fit.2 <- lm(error ~ time)
+         if (coef(summary(fit.2))[1, 4] > 0.05 & coef(summary(fit.2))[2,
+             4] > 0.05) {
+             type.1 <- "nc"
+             type.2 <- "mu"
+             error.transf <- error
+         }
+         if (coef(summary(fit.2))[1, 4] < 0.05 & coef(summary(fit.2))[2,
+             4] < 0.05) {
+             type.1 <- "ct"
+             type.2 <- "tau"
+             error.transf <- resid(fit.2)
+         }
+         if (coef(summary(fit.2))[1, 4] < 0.05 & coef(summary(fit.2))[2,
+             4] > 0.05) {
+             type.1 <- "c"
+             type.2 <- "mu"
+             error.transf <- error - mean(error)
+         }
+         if (coef(summary(fit.2))[1, 4] > 0.05 & coef(summary(fit.2))[2,
+             4] < 0.05) {
+             type.1 <- "c"
+             type.2 <- "mu"
+             error.transf <- error
+         }
+         t1 <- unitrootTest(error.transf, lags = 4, type = type.1)@test$p.value[1]
+         kpfit <- urkpssTest(error.transf, type.2, "short")
+         if (kpfit@test$test@teststat > kpfit@test$test@cval[2]) {
+             t2 <- 1
+         }
+         else {
+             t2 <- 0
+         }
+         sector.tests$uroot[pair] <- t1
+         sector.tests$kpss[pair] <- t2
+     }
+     if (temp1 > 0.05 & temp2 > 0.05) {
+         sector.tests$uroot[pair] <- 999
+         sector.tests$kpss[pair] <- 999
+     }
+ }
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
[1] 6
[1] 7
[1] 8
[1] 9
[1] 10
[1] 11
[1] 12
[1] 13
[1] 14
[1] 15
[1] 16
[1] 17
[1] 18
[1] 19
[1] 20
[1] 21
[1] 22
[1] 23
[1] 24
[1] 25
[1] 26
[1] 27
[1] 28
[1] 29
[1] 30
[1] 31
[1] 32
[1] 33
[1] 34
[1] 35
[1] 36
[1] 37
[1] 38
[1] 39
[1] 40
[1] 41
[1] 42
[1] 43
[1] 44
[1] 45
[1] 46
[1] 47
[1] 48
[1] 49
[1] 50
[1] 51
[1] 52
[1] 53
[1] 54
[1] 55
[1] 56
[1] 57
[1] 58
[1] 59
[1] 60
[1] 61
[1] 62
[1] 63
[1] 64
[1] 65
[1] 66
[1] 67
[1] 68
[1] 69
[1] 70
[1] 71
[1] 72
[1] 73
[1] 74
[1] 75
[1] 76
[1] 77
[1] 78
[1] 79
[1] 80
[1] 81
[1] 82
[1] 83
[1] 84
[1] 85
[1] 86
[1] 87
[1] 88
[1] 89
[1] 90
[1] 91
[1] 92
[1] 93
[1] 94
[1] 95
[1] 96
[1] 97
[1] 98
[1] 99
[1] 100
[1] 101
[1] 102
[1] 103
[1] 104
[1] 105
[1] 106
[1] 107
[1] 108
[1] 109
[1] 110
[1] 111
[1] 112
[1] 113
[1] 114
[1] 115
[1] 116
[1] 117
[1] 118
[1] 119
[1] 120
[1] 121
[1] 122
[1] 123
[1] 124
[1] 125
[1] 126
[1] 127
[1] 128
[1] 129
[1] 130
[1] 131
[1] 132
[1] 133
[1] 134
[1] 135
[1] 136
[1] 137
[1] 138
[1] 139
[1] 140
[1] 141
[1] 142
[1] 143
[1] 144
[1] 145
[1] 146
[1] 147
[1] 148
[1] 149
[1] 150
[1] 151
[1] 152
[1] 153
[1] 154
[1] 155
[1] 156
[1] 157
[1] 158
[1] 159
[1] 160
[1] 161
[1] 162
[1] 163
[1] 164
[1] 165
[1] 166
[1] 167
[1] 168
[1] 169
[1] 170
[1] 171
[1] 172
[1] 173
[1] 174
[1] 175
[1] 176
[1] 177
[1] 178
[1] 179
[1] 180
[1] 181
[1] 182
[1] 183
[1] 184
[1] 185
[1] 186
[1] 187
[1] 188
[1] 189
[1] 190
[1] 191
[1] 192
[1] 193
[1] 194
[1] 195
[1] 196
[1] 197
[1] 198
[1] 199
[1] 200
[1] 201
[1] 202
[1] 203
[1] 204
[1] 205
[1] 206
[1] 207
[1] 208
[1] 209
[1] 210
[1] 211
[1] 212
[1] 213
[1] 214
[1] 215
[1] 216
[1] 217
[1] 218
[1] 219
[1] 220
[1] 221
[1] 222
[1] 223
[1] 224
[1] 225
[1] 226
[1] 227
[1] 228
[1] 229
[1] 230
[1] 231
[1] 232
[1] 233
[1] 234
[1] 235
[1] 236
[1] 237
[1] 238
[1] 239
[1] 240
[1] 241
[1] 242
[1] 243
[1] 244
[1] 245
[1] 246
[1] 247
[1] 248
[1] 249
[1] 250
[1] 251
[1] 252
[1] 253
[1] 254
[1] 255
[1] 256
[1] 257
[1] 258
[1] 259
[1] 260
[1] 261
[1] 262
[1] 263
[1] 264
[1] 265
[1] 266
[1] 267
[1] 268
[1] 269
[1] 270
[1] 271
[1] 272
[1] 273
[1] 274
[1] 275
[1] 276
[1] 277
[1] 278
[1] 279
[1] 280
[1] 281
[1] 282
[1] 283
[1] 284
[1] 285
[1] 286
[1] 287
[1] 288
[1] 289
[1] 290
[1] 291
[1] 292
[1] 293
[1] 294
[1] 295
[1] 296
[1] 297
[1] 298
[1] 299
[1] 300
[1] 301
[1] 302
[1] 303
[1] 304
[1] 305
[1] 306
[1] 307
[1] 308
[1] 309
[1] 310
[1] 311
> test <- sector.tests[sector.tests$uroot != 999, ]
> dim(test)
[1] 127  12
> length(which(test$uroot < 0.05))
[1] 35

Out of 127 pairs, there are about 35 pairs which pass unit root tests
9 PAIRS ARE KNOCKED OFF when unitrootTest is used with about 4 lags.