Brownian Motion Converges to Std Normal
Purpose
If you take a symmetrical random walk and scale it, it becomes a browninan motion.
> par(mfrow = c(1, 1)) > library(ConvergenceConcepts) > genTnL <- function(n) { + delta <- 1/n + ds <- sqrt(delta) * rnorm(n) + S <- cumsum(ds) + Z <- S/(sqrt(delta) * sqrt(n)) + return(Z) + } > plot(genTnL(10000), type = "l") |
The above clearly shows that as you increase sample paths, the scaled brownian motion converges to a standard normal.