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Abstract

This document summarizes the main points of the paper, “Autoregressive Models for Capture-Recapture

Data : A Bayesian Approach’.
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1. Context

Capture-Recapture models are a part of staple diet for ecological researchers. Here is my naive interpretation

of the model :

� You capture a set of animals, tag them with unique ids and release them in to the population at t0.

� At regular intervals, you have a chance to capture a set of animals, observe whether any of the captured

animals are tagged, record them if any.

� At every recapture process, the animals who are not tagged are tagged and released in to the population.

The data are recorded in a upper triangular matrix with rows representing the capture occasions when marking

is performed, columns representing the recording occasions when recaptures or recoveries occur. In the above

scenario typically there are two types of probabilities that come in to play. One is the survival probability of an

animal from one time period to another and the other is the probability of an animal being observed, given that

animal is alive at that specific time interval. The more complicated the model is, the more parameters that a

modeler includes. For example the probabilities of survival can be made time dependent, covariate dependent.

So also are the conditional probabilities. There is a widespread belief in the ecological research community

that survival probabilities are not fixed but they are a realization of random processes with covariates such

as age, weather and time factors. This paper deals with a model in which survival probabilities are time

dependent.

What are the advantage of using Bayes estimation ?

� Allow for estimation of unobserved random effects

� Survival probabilities can be estimated for each individual period

The paper talks about applying autoregressive frame for two types of models

� Open population mark-recapture models ( Cormack-Jolly-Seber Model)

� Band recover models

2. Likelihood function

Notation

� Ri denotes the number of marked or banded animals released at each capture occasion at time ti

� mij denotes the number of animals released at time ti and subsequently recaptured or reported at time

tj

� I denotes the number of capture occasions when marking or banding is performed

� J denotes the number of recording sessions, either recaptures or recoveries

The probability model used is a multinomial model

(mi1,mi2, . . . ,miJ) ∼ Multinomial(Ri, p = f(survival, recovery))

2.1. Mark-Recapture Likelihood

The mark recapture likelihood for the observed data can be written as

L(φ,p;R,m) =

I∏
i=1

(
Ri

mi,i+1,mi,i+2, . . . ,mi,J+1, vi

)
ξvi

J+1∏
j=i+1

{
φipj

j−1∏
k=i+1

φk(1− pk)

}mij
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where

� φi is the probability that an animal survives from capture occasion ti to ti+1 given that it is alive at ti

� pj is the probability that an animal is captured at tj given that it is alive at tj , j = 2, . . . , J + 1

� ξi is the probability that an animal is never captured after released at ti

� vi is the number of animals captures at ti and never subsequently recaptured during the study

2.2. Band-Recovery Likelihood

The mark recapture likelihood for the observed data can be written as

L(φ,λ;R,m) =

I∏
i=1

(
Ri

mi,i+1,mi,i+2, . . . ,mi,J+1, vi

)
ξvi

J∏
j=i

{
λi

j−1∏
k=i

φk

}mij

where

� φi is the probability that an animal survives from capture occasion ti to ti+1 given that it is alive at ti

� λj is the probability that a marked animal is hunted between tj and tj+1

� ξi is the probability that an animal is never recaptured after released at ti

� vi is the number of animals captures at ti and never subsequently recaptured during the study

3. Bayesian Approach to survival models

The glm considered for probability that an animal survives from time tj to tj+1 is

g(φj) = β + εj , j = 1, 2, . . . , J

εj =

k∑
i=1

ρkεj−k + zj , j = 1, 2, . . . , J

where X ′j is the matrix of covariates, β is a vector of regression coefficients, ε′ ∼ N(0,Σ) and zj ∼ N(0, σ2)

The main reason behind using AR(m) model is that it provides a positive or negative correlation between

survival probabilities that decrease with an increasing separation of time.

The posterior distribution of parameters and random effects are given by

π(β, σ2,ρ, ε, r|D) = L(β, ε, r;D)× π(β)π(σ2)π(ρ)π(r)× |Σ|−1/2 exp
(
−ε′Σ−1ε/2

)
The paper derives the full conditional distributions for the following parameters

� f(βl|β−l, σ2,ρ, ε, r, D)

� f(rl|r−l,β, σ2,ρ, ε, D)

� f(σ2|r,β,ρ, ε, D)

� f(ρ|σ2,β,ρ, ε, D)

� f(ε|σ2,ρ, D)

Given a proper choice of conjugate prior, only one of the above posteriors come out to have a standard form.

The rest are non standard densities. Hence there is a need to use a combination of Metropolis Hastings steps

and Gibbs sampling steps. Thankfully WinBUGS takes care of these steps, once the DAG is set up.
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4. Parameter estimation using WinBUGS

4.1. Intercept only Model

{

sink("model-int.txt")

cat("model

{

for(i in 1:I){ D[i, 2:(I+2)] ~ dmulti(C[i,], D[i, 1]); }

for(i in 1:(I-1)){

lphi[i] <- log(phi[i])

logit(phi[i]) <- beta + e[i]

for(j in (i+1):I){

C[i, j] <- lambda[j]*exp(sum(lphi[i:(j-1)]))

}

for (j in 1:i){

C[i+1, j] <- 0

}

}

for(i in 1:I){

C[i, i] <- lambda[i]

C[i, I+1] <- 1 - sum(C[i, 1:I])

}

e[1] ~ dnorm(mu[1], tau1)

e[2] ~ dnorm(mu[2], tau2)

mu[1] <- 0

mu[2] <- (rho[1]/(1-rho[2]))*e[1]

tau1 <- ((1+rho[2])/(1-rho[2]))*((1-rho[2])*(1-rho[2]) - rho[1]*rho[1])*tau

tau2 <- tau*(1 - rho[2]*rho[2])

for(i in 3:(I-1)){

e[i] ~ dnorm(mu[i],tau)

mu[i] <- rho[1]*e[i-1] + rho[2]*e[i-2]

}

sigma <- 1/sqrt(tau)

beta ~ dnorm(0, 0.01)

for(i in 1:I){lambda[i] ~ dunif(0, 1)}

tau ~ dgamma(0.001, 0.001)

rho[1] ~ dunif(l, u)

u <- abs(1 - rho[2])

l <- -u

rho[2] ~ dunif(-1, 1)

}",fill = TRUE)

sink()}
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#dataset

data <- list(I=28,D = matrix(data = c(

270, 7, 6, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 252, 693, 0, 21, 10, 4, 2,

3, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 651, 1612, 0, 0, 32, 20, 8, 5, 1, 2, 0, 2, 1, 1, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1540, 858, 0, 0, 0, 26,

12, 5, 6, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 804, 1471, 0, 0, 0, 0, 21, 18, 6, 5, 0, 0, 1, 0, 1, 1,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1418, 1051, 0, 0, 0,

0, 0, 18, 4, 6, 4, 1, 2, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 1013, 796, 0, 0, 0, 0, 0, 0, 24, 6, 4, 0, 3, 3, 0,

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 755, 277, 0, 0, 0,

0, 0, 0, 0, 10, 9, 6, 6, 4, 1, 2, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 233, 903, 0, 0, 0, 0, 0, 0, 0, 0, 15, 8, 1, 8, 4, 0,

2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 862, 621, 0, 0, 0, 0,

0, 0, 0, 0, 0, 6, 4, 1, 6, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 602, 584, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 4, 3, 7, 3,

1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 553, 822, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 25, 6, 10, 4, 4, 2, 0, 0, 2, 0, 0, 1, 0, 0, 0,

0, 0, 768, 1344, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 28, 27, 8,

11, 3, 1, 4, 1, 2, 0, 0, 1, 0, 0, 0, 0, 1258, 566, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 13, 6, 2, 2, 1, 1, 1, 1, 0, 0, 0,

0, 0, 0, 529, 481, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9,

7, 3, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 459, 695, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 11, 5, 2, 2, 1, 1, 0, 1, 1, 0,

0, 0, 660, 632, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

22, 10, 2, 4, 0, 1, 2, 0, 0, 0, 0, 0, 591, 1114, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 11, 8, 3, 5, 3, 2, 1, 0,

0, 0, 1060, 639, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 9, 10, 10, 2, 3, 0, 2, 0, 0, 0, 603, 926, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 9, 9, 2, 5, 1, 2,

1, 0, 881, 858, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 14, 12, 3, 5, 1, 1, 1, 0, 821, 369, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 2, 4, 4, 1,

1, 0, 344, 450, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 8, 3, 4, 1, 2, 1, 431, 212, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 1,

0, 205, 1680, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 18, 28, 8, 4, 1622, 421, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 1,

2, 404, 118, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 116, 60, 0, 0, 0, 0, 0, 0, 0,
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0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,

59), nrow = 28, ncol = 30, byrow=TRUE))

# Initialize parameters

inits <- function() { list(

beta = 0.6, tau = 1, rho = c(0.4, -0.4),

e = c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

lambda= c(0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,

0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,

0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01))}

# Parameters to track

params <- c("phi", "rho", "beta" ,"sigma","phi")

# MCMC settings

nc <- 1

ni <- 10000

nb <- 1000

nt <- 1

# bugs directory

bugs.directory <- "C:/Cauldron/garage/WinBUGS14"

# Use WinBUGS

samples_int_only <- bugs(data = data, inits = inits, parameters = params,

model="model-int.txt", n.thin=nt, n.chains=nc, n.burnin=nb,

n.iter = ni, debug = FALSE,codaPkg = FALSE,

bugs.directory = bugs.directory)

coef_int_only <- round(samples_int_only$summary[28:31,c(1,2,3,5,7)],3)

print(coef_int_only)

## mean sd 2.5% 50% 97.5%

## rho[1] 0.083 0.268 -0.420 0.080 0.605

## rho[2] -0.519 0.277 -0.907 -0.563 0.168

## beta 0.570 0.125 0.298 0.576 0.820

## sigma 0.583 0.181 0.180 0.585 0.943
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Density Estimates of parameters
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4.2. Intercept and Slope Model

{

sink("model-int-slope.txt")

cat("model

{

for(i in 1:I){ D[i, 2:(I+2)] ~ dmulti(C[i,], D[i, 1]); }

for(i in 1:(I-1)){

lphi[i] <- log(phi[i])

logit(phi[i]) <- beta[1] + beta[2]*(i-14) + e[i]

for(j in (i+1):I){

C[i, j] <- lambda[j]*exp(sum(lphi[i:(j-1)]))

}

for (j in 1:i){

C[i+1, j] <- 0

}

}

for(i in 1:I){

C[i, i] <- lambda[i]

C[i, I+1] <- 1 - sum(C[i, 1:I])

}

e[1] ~ dnorm(mu[1], tau1)

e[2] ~ dnorm(mu[2], tau2)

mu[1] <- 0

mu[2] <- (rho[1]/(1-rho[2]))*e[1]

tau1 <- ((1+rho[2])/(1-rho[2]))*((1-rho[2])*(1-rho[2]) - rho[1]*rho[1])*tau

tau2 <- tau*(1 - rho[2]*rho[2])

for(i in 3:(I-1)){

e[i] ~ dnorm(mu[i],tau)

mu[i] <- rho[1]*e[i-1] + rho[2]*e[i-2]

}

sigma <- 1/sqrt(tau)

for(i in 1:2){beta[i] ~ dnorm(0, 0.01)}

for(i in 1:I){lambda[i] ~ dunif(0, 1)}

tau ~ dgamma(0.001, 0.001)

rho[1] ~ dunif(l, u)

u <- abs(1 - rho[2])

l <- -u

rho[2] ~ dunif(-1, 1)

}",fill = TRUE)

sink()}
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# Initialize parameters

inits <- function() { list(

beta = c(0.6, 0.01), tau = 1, rho = c(0.4, -0.4),

e = c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

lambda= c(0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,

0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,

0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01))}

# Parameters to track

params <- c("phi", "rho", "beta" ,"sigma","phi")

# MCMC settings

nc <- 1

ni <- 10000

nb <- 1000

nt <- 1

# bugs directory

bugs.directory <- "C:/Cauldron/garage/WinBUGS14"

# Use WinBUGS

samples_int_slope <- bugs(data = data, inits = inits, parameters = params,

model="model-int-slope.txt", n.thin=nt, n.chains=nc, n.burnin=nb,

n.iter = ni, debug = FALSE,codaPkg = FALSE,

bugs.directory = bugs.directory)

coef_int_slope <- round(samples_int_slope$summary[28:32,c(1,2,3,5,7)],3)

print(coef_int_slope)

## mean sd 2.5% 50% 97.5%

## rho[1] -0.006 0.261 -0.530 -0.006 0.499

## rho[2] -0.530 0.272 -0.919 -0.575 0.119

## beta[1] 0.660 0.150 0.359 0.654 0.980

## beta[2] -0.008 0.023 -0.059 -0.007 0.034

## sigma 0.720 0.223 0.368 0.692 1.244
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Density Estimates of parameters
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5. Model comparison

Intercept Model

mean sd 2.5pct 50pct 97.5pct
ρ1 0.083 0.268 -0.420 0.080 0.605
ρ2 -0.519 0.277 -0.907 -0.563 0.168
β 0.570 0.125 0.298 0.576 0.820
σ 0.583 0.181 0.180 0.585 0.943

Intercept and Slope Model

mean sd 2.5pct 50pct 97.5pct
ρ1 -0.006 0.261 -0.530 -0.006 0.499
ρ2 -0.530 0.272 -0.919 -0.575 0.119
β1 0.660 0.150 0.359 0.654 0.980
β2 -0.008 0.023 -0.059 -0.007 0.034
σ 0.720 0.223 0.368 0.692 1.244

The above stats show that intercept model is good enough

Survival Probability plot
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