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Abstract

The purpose of this document is to list down various methods to simulate a non homogeneous Poisson

process.
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1 Introduction

The one-dimensional non-homogeneous Poisson process has the characteristic properties that

� the number of points in any interval has a Poisson distribution

� the number of points in any finite set of non overlapping intervals are mutually independent random

variables

� the intervals between the points are not independent

� the intervals between the points are not identically distributed

The most general NHPP can be defined in terms of a monotone non decreasing right-continuous function Λ(x)

which is bounded in any finite interval. Then the number of points in any finite interval, for example (0, x0]

has a Poisson distribution with parameter µ0 = Λ(x0) − Λ(0). The right derivative of Λ(x) is denoted by

λ(x) and is called rate function. Λ(x) is called the integrated rate function and has the interpretation that

Λ(x)− Λ(0) = E[N(x)], where N(x) is the total number of points in (0, x].

The subsequent sections contain five methods to simulate NHPP.

� Time-scale transformation of a homogeneous Poisson process

� Generate intervals between points individually

� Using order statistics

� Simulation by Thinning

� Generate intervals between points individually by Thinning

2 Time-scale transformation of a homogeneous Poisson process

The basic idea behind this method is the connection between homogeneous Poisson process of rate one and

a non-homogeneous Poisson process. Denote N1(t) as a rate one HPP. The corresponding inter arrivals

distribution I0 are distributed as an exponential distribution of rate one.

P (I0 ≥ t) = exp (−t)

⇒
P (I0 ≥ Λ(t)) = exp (−Λ(t))

⇒
P (Λ−1(I0) ≥ t) = exp (−Λ(t)) (1)

Let I ′0 denote the distribution of inter arrivals for NHPP, then

P (I ′0 ≥ t) = exp (−Λ(t)) (2)

From equation 1 and equation 2, we can make the following observation :

If X ′1, X
′
2, . . . are the points of a NHPP with continuous integrated rate function Λ(x) if and only

if X1 = Λ(X ′1), X2 = Λ(X ′2), . . . are the points of a HPP of rate one.

Hence the simulation involves generating exponential variables and taking Λ−1 of the generated time instants
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Let us consider three different intensity functions and simulate realizations

λ(t) = 1 + bt, b ∈ (0.01, 0.1, 1) (3)

λ(t) = 1 + b sin(2πt), b ∈ (1, 10, 100) (4)

λ(t) = 100(sin(πt) + 1) (5)

Sample realization for the following rate functions:

λ(t) = 1 + 0.01t

λ(t) = 1 + 0.1t

λ(t) = 1 + t

bs <- c(0.01, 0.1, 1)

get_nhpp_realization <- function(lambda){

set.seed(1)

t_max <- 10

t <- 0

s <- 0

Lambda <- function(tupper) integrate(f = lambda, lower = 0, upper = tupper)$value

Lambda_inv <- function(s){

v <- seq(0,t_max+3, length.out = 1000)

min(v[Vectorize(Lambda)(v)>=s])

}

X <- numeric(0)

while(t <= t_max){

u <- runif(1)

s <- s -log(u)

t <- Lambda_inv(s)

X <- c( X, t)

}

return(X)

}

b <- bs[1]

lambda <- function(t) 1 + b*t

res_1 <- get_nhpp_realization(lambda)

n_1 <- length(res_1)

b <- bs[2]

lambda <- function(t) 1 + b*t

res_2 <- get_nhpp_realization(lambda)

n_2 <- length(res_2)

b <- bs[3]

lambda <- function(t) 1 + b*t

4



Simulation of Non-Homogeneous Poisson Processes

res_3 <- get_nhpp_realization(lambda)

n_3 <- length(res_3)

Sample realization for the following rate functions:

λ(t) = 1 + 0.01t

λ(t) = 1 + 0.1t

λ(t) = 1 + t
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Sample realization for the following rate functions:

λ(t) = 1 + (1 + sin(2πt))

λ(t) = 1 + 10(1 + sin(2πt))

λ(t) = 1 + 20(1 + sin(2πt))

bs <- c(1, 10, 20)

b <- bs[1]

lambda <- function(t) 1 + b*(1+sin(2*pi*t))

res_1 <- get_nhpp_realization(lambda)

n_1 <- length(res_1)

b <- bs[2]

lambda <- function(t) 1 + b*(1+sin(2*pi*t))

res_2 <- get_nhpp_realization(lambda)

n_2 <- length(res_2)

b <- bs[3]

lambda <- function(t) 1 + b*(1+sin(2*pi*t))

res_3 <- get_nhpp_realization(lambda)

n_3 <- length(res_3)
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Sample realization for the following rate functions:

λ(t) = 100(sin(πt) + 1)

lambda <- function(t) 100*(sin(t*pi)+1)

res_1 <- get_nhpp_realization(lambda)

n_1 <- length(res_1)
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For a specific interval dt = 0.1 seconds, a histogram plot of arrival process gives a count of arrivals in that

specific interval. In that small interval, λdt is the mean arrival rate of the process. One can overlay the two

and see how the simulation matches
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3 Generate intervals between points individually

This method involves generating the intervals between points individually, an approach which may seem more

natural in the event-scheduling approach to simulation. Thus, given the points, X1 = x1, X2 = x2, . . . Xi = xi

with X1 < X2 < . . . < Xi, the interval to the next point, Xi+1 −Xi, is independent of x1, . . . xi−1 and has a

distribution function that is independent of x1, . . . , xi−1 and has distribution function

F (x) = 1− exp(−(Λ(xi + x)− Λ(xi)))

It is possible to find the inverse distribution function via numerical procedure and generate Xi+1 − Xi =

F−1(Ui) where Ui is an uniform random number in the interval (0, 1). The problem with this method is that

it very inefficient with respect to speed because

Xi+1−Xi need not necessarily be a proper random variable, i.e. there may be positive probability

that Xi+1 −Xi is ∞

Sample realization for the following rate functions:

λ(t) = 1 + 0.01t

λ(t) = 1 + 0.1t

λ(t) = 1 + t

bs <- c(0.01, 0.1, 1)

get_nhpp_realization <- function(lambda){

set.seed(1)

t_max <- 10

t <- 0

Lambda <- function(tupper) integrate(f = lambda, lower = 0, upper = tupper)$value

Ft <- function(x) 1 - exp(-(Lambda(t+x)- Lambda(t)))

Ft_inv <- function(u){

a <- 0

b <- t_max+2

eps <- 1e-6

while(abs(a-b)>eps){

if(Ft((a + b)/2)<=u) a <- (a+b)/2

if(Ft((a + b)/2)>u) b <- (a+b)/2

}

return(0.5*(a+b))

}

X <- numeric(0)

while(t <= t_max){

t <- t + Ft_inv(runif(1))

X <- c( X, t)

}

return(X)
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}

b <- bs[1]

lambda <- function(t) 1 + b*t

res_1 <- get_nhpp_realization(lambda)

n_1 <- length(res_1)

b <- bs[2]

lambda <- function(t) 1 + b*t

res_2 <- get_nhpp_realization(lambda)

n_2 <- length(res_2)

b <- bs[3]

lambda <- function(t) 1 + b*t

res_3 <- get_nhpp_realization(lambda)

n_3 <- length(res_3)

Sample realization for the following rate functions:

λ(t) = 1 + 0.01t

λ(t) = 1 + 0.1t

λ(t) = 1 + t
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Sample realization for the following rate functions:

λ(t) = 1 + (1 + sin(2πt))

λ(t) = 1 + 10(1 + sin(2πt))

λ(t) = 1 + 20(1 + sin(2πt))

bs <- c(1, 10, 20)

b <- bs[1]

lambda <- function(t) 1 + b*(1+sin(2*pi*t))

res_1 <- get_nhpp_realization(lambda)

n_1 <- length(res_1)

b <- bs[2]

lambda <- function(t) 1 + b*(1+sin(2*pi*t))

res_2 <- get_nhpp_realization(lambda)

n_2 <- length(res_2)

b <- bs[3]

lambda <- function(t) 1 + b*(1+sin(2*pi*t))

res_3 <- get_nhpp_realization(lambda)

n_3 <- length(res_3)
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Sample realization for the following rate functions:

λ(t) = 100(sin(πt) + 1)

lambda <- function(t) 100*(sin(t*pi)+1)

res_1 <- get_nhpp_realization(lambda)

n_1 <- length(res_1)
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For a specific interval dt = 0.1 seconds, a histogram plot of arrival process gives a count of arrivals in that

specific interval. In that small interval, λdt is the mean arrival rate of the process. One can overlay the two

and see how the simulation matches
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4 Using order statistics

The simulation of a non homogeneous Poisson process in a fixed interval (0, x0] can be reduced to the generation

of a Poisson number of order statistics from a fixed density function by the following result

IfX1, X2, . . . , Xn are the points of the non homogeneous Poisson process in (0, x0] and ifN(x0) = n,

then conditional on having observed n > 0 points in (0, x0], the Xi are distributed as the order

statistics from a sample of size n from the distribution function

Λ(x)− Λ(0)

Λ(x0)− Λ(0)

defined for 0 < x ≤ x0

Generation of the NHPP is based on order statistics is in general more efficient than the previous two method.

The price to be paid for this efficiency is

� It is necessary to be able to generate Poisson variates

� More memory is needed than in the interval-by-interval method in order to store the sequence of points

Sample realization for the following rate functions:

λ(t) = 1 + 0.01t

λ(t) = 1 + 0.1t

λ(t) = 1 + t

bs <- c(0.01, 0.1, 1)

get_nhpp_realization <- function(lambda){

set.seed(1)

t_max <- 10

t <- 0

Lambda <- function(tupper) integrate(f = lambda, lower = 0, upper = tupper)$value

Ft <- function(x) Lambda(x)/ Lambda(t_max)

Ft_inv <- function(u){

a <- 0

b <- t_max+2

eps <- 1e-6

while(abs(a-b)>eps){

if(Ft((a + b)/2)<=u) a <- (a+b)/2

if(Ft((a + b)/2)>u) b <- (a+b)/2

}

return(0.5*(a+b))

}

n <- rpois(1, Lambda(t_max))

X <- sapply(1:n, function(z) Ft_inv(runif(1)))

return(sort(X))

}
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b <- bs[1]

lambda <- function(t) 1 + b*t

res_1 <- get_nhpp_realization(lambda)

n_1 <- length(res_1)

b <- bs[2]

lambda <- function(t) 1 + b*t

res_2 <- get_nhpp_realization(lambda)

n_2 <- length(res_2)

b <- bs[3]

lambda <- function(t) 1 + b*t

res_3 <- get_nhpp_realization(lambda)

n_3 <- length(res_3)

Sample realization for the following rate functions:

λ(t) = 1 + 0.01t

λ(t) = 1 + 0.1t

λ(t) = 1 + t
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Sample realization for the following rate functions:

λ(t) = 1 + (1 + sin(2πt))

λ(t) = 1 + 10(1 + sin(2πt))

λ(t) = 1 + 20(1 + sin(2πt))

bs <- c(1, 10, 20)

b <- bs[1]

lambda <- function(t) 1 + b*(1+sin(2*pi*t))

res_1 <- get_nhpp_realization(lambda)

n_1 <- length(res_1)

b <- bs[2]

lambda <- function(t) 1 + b*(1+sin(2*pi*t))

res_2 <- get_nhpp_realization(lambda)

n_2 <- length(res_2)

b <- bs[3]

lambda <- function(t) 1 + b*(1+sin(2*pi*t))

res_3 <- get_nhpp_realization(lambda)

n_3 <- length(res_3)
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Sample realization for the following rate functions:

λ(t) = 100(sin(πt) + 1)

lambda <- function(t) 100*(sin(t*pi)+1)

res_1 <- get_nhpp_realization(lambda)

n_1 <- length(res_1)
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For a specific interval dt = 0.1 seconds, a histogram plot of arrival process gives a count of arrivals in that

specific interval. In that small interval, λdt is the mean arrival rate of the process. One can overlay the two

and see how the simulation matches
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5 Simulation by Thinning

The key idea of behind this method is that simulation of a non homogeneous Poisson process with general

rate function λ(x) in a fixed interval can be based on thinning of a non homogeneous Poisson process with

rate function λ∗(x) ≥ λ(x)

In order to understand the rationale behind this procedure, it is important to know the following

Given the total number of arrivals N(t) = n in the interval (0, t) from an inhomogeneous Poisson

process, the arrival instants of these n arrivals are distributed independently in the interval (0, t)

with the density function

λ(t)/

∫ t

0

λ(s)ds

If the probability of accepting a point if λ(t)/λ∗(t), then the conditional probability of accepting a point is

λ(t)

λ∗(t)

λ∗(t)

Λ∗(b)− Λ∗(a)
=

λ(t)

Λ∗(b)− Λ∗(a)

⇒ Unconditional probability of acceptance is

p(a, b) =

∫ b

a

λ(t)

Λ∗(b)− Λ∗(a)
=

Λ(b)− Λ(a)

Λ∗(b)− Λ∗(a)

Let N∗(a, b) = k, i.e. there are k arrivals for the dominating process λ∗. Then the probability of n arrivals for

thinned process is

P (N(a, b) = n|N∗(a, b) = k) = (p(a, b))n(1− p(a, b))k−n, k ≥ n ≥ 1

⇒

P (N(a, b)) =

∞∑
k=n

(p(a, b))n(1− p(a, b))k−n P (N∗(a, b) = k)

Denoting p(a, b) = p and (1− p(a, b) = q

P (N(a, b)) =

∞∑
k=n

(p)n(q)k−n P (N∗(a, b) = k)

Let N∗(z) be the z transform of the dominating process

N∗(z) =

∞∑
z=0

P (N∗(a, b) = k)zk = e−(Λ∗(b)−Λ∗(a))(1−z)

Differentiating the above expression n times with respect to z

∞∑
k=n

n!P (N∗(a, b) = k)zk−n = (Λ∗(b)− Λ∗(a))n e(−(Λ∗(b)−Λ∗(a))(1−z))
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Evaluating the z transform at q

∞∑
k=n

n!P (N∗(a, b) = k)qk−n = (Λ∗(b)− Λ∗(a))n e(−(Λ(b)−Λ(a))

⇒
∞∑

k=n

n!pnP (N∗(a, b) = k)qk−n = pn(Λ∗(b)− Λ∗(a))n e(−(Λ(b)−Λ(a))

⇒
∞∑

k=n

pnP (N∗(a, b) = k)qk−n =
1

n!
pn(Λ∗(b)− Λ∗(a))n e(−(Λ(b)−Λ(a))

⇒

P (N(a, b)) =
1

n!
(Λ(b)− Λ(a))n e(−(Λ(b)−Λ(a))

Hence the thinned process is a Poisson process with cumulative rate function Λ(t)

Algorithm for Simulation via thinning :

1. Generate points in the NHPP N∗(x)) with rate function λ∗(x) in the fixed interval (0, x0). If the number

of points generated, n∗, is such that n∗ = 0, exit. There are no points in the process N(x)

2. Denote the ordered points by X∗1 , X
∗
2 , . . . , X

∗
n. Set i = 1 and k = 0

3. Generate Ui, uniformly distributed between 0 and 1. If Ui ≤ λ(X∗i )/λast(X∗i ), set k = k + 1 and

Xk = X∗i
4. Set i = i+ 1. If i ≤ nast, then got to step 3.

Sample realization for the following rate functions:

λ(t) = 1 + 0.01t

λ(t) = 1 + 0.1t

λ(t) = 1 + t

bs <- c(0.01, 0.1, 1)

get_nhpp_realization <- function(lambda){

set.seed(1)

t_max <- 10

t <- 0

lambda_star <- function() max(sapply(seq(1, t_max,length.out=1000), lambda))*2

Lambda <- function(tupper) integrate(f = lambda, lower = 0, upper = tupper)$value

X <- numeric()

while(t <= t_max){

u <- runif(1)

t <- t - log(u)/lambda_star()

if(runif(1) < lambda(t)/lambda_star()) {

X <- c(X,t)

}
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}

return(X)

}

b <- bs[1]

lambda <- function(t) 1 + b*t

res_1 <- get_nhpp_realization(lambda)

n_1 <- length(res_1)

b <- bs[2]

lambda <- function(t) 1 + b*t

res_2 <- get_nhpp_realization(lambda)

n_2 <- length(res_2)

b <- bs[3]

lambda <- function(t) 1 + b*t

res_3 <- get_nhpp_realization(lambda)

n_3 <- length(res_3)
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Sample realization for the following rate functions:

λ(t) = 1 + (1 + sin(2πt))

λ(t) = 1 + 10(1 + sin(2πt))

λ(t) = 1 + 20(1 + sin(2πt))

bs <- c(1, 10, 20)

b <- bs[1]

lambda <- function(t) 1 + b*(1+sin(2*pi*t))

res_1 <- get_nhpp_realization(lambda)

n_1 <- length(res_1)

b <- bs[2]

lambda <- function(t) 1 + b*(1+sin(2*pi*t))

res_2 <- get_nhpp_realization(lambda)

n_2 <- length(res_2)

b <- bs[3]

res_3 <- get_nhpp_realization(lambda)

n_3 <- length(res_3)
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Sample realization for the following rate functions:

λ(t) = 100(sin(πt) + 1)

lambda <- function(t) 100*(sin(t*pi)+1)

res_1 <- get_nhpp_realization(lambda)

n_1 <- length(res_1)
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For a specific interval dt = 0.1 seconds, a histogram plot of arrival process gives a count of arrivals in that

specific interval. In that small interval, λdt is the mean arrival rate of the process. One can overlay the two

and see how the simulation matches
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6 Generate intervals between points individually by thinning

Sample realization for the following rate functions:

λ(t) = 1 + 0.01t

λ(t) = 1 + 0.1t

λ(t) = 1 + t

bs <- c(0.01, 0.1, 1)

get_nhpp_realization <- function(lambda){

set.seed(1)

t_max <- 10

t <- 0

lambda_star <- function() max(sapply(seq(1, t_max,length.out=1000), lambda))*2

Ft_inv <- function(u){-log(1-u)/lambda_star()}

X <- numeric(0)

while(t <= t_max){

t <- t + Ft_inv(runif(1))

if(runif(1) < lambda(t)/lambda_star()) {

X <- c(X,t)

}

}

return(X)

}

b <- bs[1]

lambda <- function(t) 1 + b*t

res_1 <- get_nhpp_realization(lambda)

n_1 <- length(res_1)

b <- bs[2]

lambda <- function(t) 1 + b*t

res_2 <- get_nhpp_realization(lambda)

n_2 <- length(res_2)

b <- bs[3]

lambda <- function(t) 1 + b*t

res_3 <- get_nhpp_realization(lambda)

n_3 <- length(res_3)

Sample realization for the following rate functions:

λ(t) = 1 + 0.01t

λ(t) = 1 + 0.1t

λ(t) = 1 + t
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Sample realization for the following rate functions:

λ(t) = 1 + (1 + sin(2πt))

λ(t) = 1 + 10(1 + sin(2πt))

λ(t) = 1 + 20(1 + sin(2πt))

bs <- c(1, 10, 20)

b <- bs[1]

lambda <- function(t) 1 + b*(1+sin(2*pi*t))

res_1 <- get_nhpp_realization(lambda)

n_1 <- length(res_1)

b <- bs[2]

lambda <- function(t) 1 + b*(1+sin(2*pi*t))

res_2 <- get_nhpp_realization(lambda)

n_2 <- length(res_2)

b <- bs[3]

res_3 <- get_nhpp_realization(lambda)

n_3 <- length(res_3)
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Sample realization for the following rate functions:

λ(t) = 100(sin(πt) + 1)

lambda <- function(t) 100*(sin(t*pi)+1)

res_1 <- get_nhpp_realization(lambda)

n_1 <- length(res_1)
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For a specific interval dt = 0.1 seconds, a histogram plot of arrival process gives a count of arrivals in that

specific interval. In that small interval, λdt is the mean arrival rate of the process. One can overlay the two

and see how the simulation matches
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7 Simulation of two-dimensional homogeneous Poisson process

The two dimensional homogeneous Poisson process is defined by the properties that the number of points in

any finite set of non overlapping regions having areas in the usual geometric sense are mutually independent,

and that the number of points in any region of area A has a Poisson distribution with mean λA.

Homogeneous Poisson Processes in a Rectangle

There are two theorems that are important to simulate Poisson process in a rectangle

Theorem 7.1 Consider a two-dimensional homogeneous Poisson process of rate λ, so that the number of

points in a fixed rectangle R = {(x, y) : 0 < x ≤ x0, 0 ≤ y ≤ y0 has a Poisson distribution with parameter

λx0y0. If (X1, Y1), (X2, Y2), . . . , (XN , YN ) denote the position of the points of the process in R, labeled so that

X1 < X2 . . . XN , then X1, X2, . . . XN form a one-dimensional homogeneous Poisson process on 0 < x ≤ x0

with rate λy0. If (X ′1, Y
′
1), (X ′2, Y

′
2), . . . , (X ′N , Y

′
N ) denote the position of the points of the process in R, labeled

so that Y ′1 < Y ′2 . . . Y
′
N , then Y ′1 , Y

′
2 , . . . Y

′
N form a one-dimensional homogeneous Poisson process on 0 < y ≤ y0

with rate λx0.

Theorem 7.2 Assume that a two-dimensional homogeneous Poisson process of rate λ is observed in a fixed

rectangle R = {(x, y) : 0 < x ≤ x0, 0 ≤ y ≤ y0, so that the number of points in R , N(R) = n > 0 has a

Poisson distribution with parameter λx0y0. If N(R) = n > 0, and if (X1, Y1), (X2, Y2), . . . , (XN , YN ) denote

the position of the points of the process in R, labeled so that X1 < X2 . . . XN , then conditional on having

observed n points in R, X1, X2, . . . XN , are uniform order statistics on on 0 < x ≤ x0 with rate λx0 and

Y1, Y2, . . . YN , are uniform order statistics on on 0 < y ≤ y0 with rate λy0

Simulate Poisson with rate λ in a rectangle : Using Theorem 7.1

set.seed(1)

x0 <- 4

y0 <- 2

lambda <- 10

lambda_x <- lambda*y0

xs <- cumsum(rexp(100,lambda_x))

x <- sort(xs[xs<=x0])

y <- runif(length(x),0,y0)
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Simulate Poisson with rate λ in a rectangle : Using Theorem 7.2

set.seed(1)

x0 <- 4

y0 <- 2

lambda <- 10

n <- rpois(1,lambda*x0*y0)

x <- sort(runif(n,0,x0))

y <- runif(n,0,y0)
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Homogeneous Poisson Processes in a Circle

There are two theorems that are important to simulate Poisson process in a circular region

Theorem 7.3 Consider a two-dimensional homogeneous Poisson process of rate λ so that the number N of

points in a fixed circular area of C of radius r0 and area πr2
0 has a Poisson distribution with parameter λπr2

0. If

(R1, θ1), (R2, θ2), . . . (RN , θN ) denote the points of the process in C,labelled so that R1 < R2 < . . . < RN , then

R1, R2, . . . RN form a one-dim non homogeneous Poisson process on 0 ≤ r ≤ r0 with rate function λ(r) = 2πλr.

If (R′1, θ
′
1), (R′2, θ

′
2), . . . (R′N , θ

′
N ) denote the points of the process in C,labelled so that θ′1 < θ′2 < . . . < θ′N , then

θ′1, θ
′
2, . . . θ

′
N form a one-dim homogeneous Poisson process on 0 ≤ θ ≤ 2π with rate function λr2

0

Theorem 7.4 Assume a two-dimensional homogeneous Poisson process of rate λ is observed in A, a fixed

circular area of C of radius r0 , then N(C)has a Poisson distribution with parameter λπr2
0. If N(C) = n > 0,

and if (R1, θ1), (R2, θ2), . . . (Rn, θn) denote the points of the process in C,labelled so that R1 < R2 < . . . < Rn,

then R1, R2, . . . Rn are order statistics from the density f(r) = 2 ∗ r/r2
0, concentrated on 0 ≤ r ≤ r0 and

θ1, θ2, . . . , θn are independent and uniformly distributed on 0 ≤ θ ≤ 2π

Simulate Poisson with in a circle : Using Theorem 7.4

set.seed(1)

r0 <- 2

lambda <- 5

n <- rpois(1,lambda*pi*r0^2)

x <- sort(runif(n))*r0 # density f(r) = 2r/(r_0^2)

theta <- runif(n,0,2*pi)
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Homogeneous Poisson Processes in a non-circular or non-rectangular region

Direct generation of homogeneous Poisson points in non-circular or non-rectangular regions is difficult.The

processes obtained by projection of the points on the two axes are non homogeneous Poisson processes with

complex rate functions determined by the geometry of the region. However, the conditional independence

which is found in circular and rectangular regions for the processes on the two axes is not present. The pairs

are mutually independent but a given Xi is not independent of Yi. Therefore, it is simpler to enclose the

region in either a circle or a rectangle, generate a homogeneous Poisson process in the enlarged area, and

subsequently exclude points outside of the given region.

8 Simulation of two-dimensional non homogeneous Poisson process

The two-dimensional non homogeneous Poisson process {N(x, y) : x ≥ 0, y ≥ 0} is specified by a positive rate

function λ(x, y) which for simplicity is assumed here to be continuous. Then the process has the characteristic

properties that the numbers of points in any finite set of non overlapping regions having areas in the usual

geometric sense are mutually independent, and that the number of points in any such region R has a Poisson

distribution with mean Λ(R)

Thinning can be used to generate homogeneous Poisson process. Suppose that λ(x, y) ≤ λ∗(x, y) in a fixed

rectangular region of the plane. If a non homogeneous Poisson process with rate function λ∗(x, y) is thinned

according to λ(x, y)/λ∗(x, y), the result is a non homogeneous Poisson process with rate function λ(x, y)

9 Advantages of Thinning

Thinning is a very useful method for simulating non homogeneous Poisson processes in one dimension and two

dimensions, as compared to other methods. The method uses a bounding process which is homogeneous with

a rate function equal to the maximum value of the given rate function.

The following lists down the advantages of thinning:

� No numerical integration is required

� No ordering or generation of Poisson variates is required, only the ability to evaluate the given rate

function

� Particularly attractive in the two-dimensional case

� Can be implemented more efficiently at the cost of programming complexity and by using a nonhomo-

geneous bounding process
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