
Numerical Inversion of Laplace Transforms of Probability

Distributions

RK

February 20, 2015

Abstract

The purpose of this document is to summarize main points of the paper, “Numerical Inversion of Laplace

Transforms of Probability Distributions”, and provide R code for the Euler method that is described in the

paper. The code is used to invert the Laplace transform of some popular functions.

Context

Laplace transform is a useful mathematical tool that one must be familiar with, while doing applied work. It

is widely used in Queueing models where probability distributions are characterized in terms of transforms.

Inverting a Laplace transform to get to the probability distribution is an essential task in Queueing theory.

For textbook examples and simple Markovian models, one might be fortunate to find convenient forms for

LT inversion. However for most of the real life situations, a practitioner needs to know a way to numerically

invert LT. The paper titled,“Numerical Inversion of Laplace Transforms of Probability Distributions”, written

by Joseph Abate and Ward Whitt gives two methods. This document focuses on one of the methods, Euler

Objective

The objective is to calculate values of a real valued function f(t) of a positive real variable t for various t from

the Laplace transform

f̂(s) =

∫ ∞
0

e−stf(t)dt,

where s is a complex variable with nonnegative real part. The following are the assumptions made about the

function f(t):

� |f | ≤ 1 for all t in the error analysis

� f is sufficiently smooth.

� The algorithm requires that one is able to evaluate the real part of the Laplace transform f̂(s) at any

desired complex s

� The algorithm is intended for computing f(t) at single values of t.

1

Numerical Inversion of Laplace Transforms of Probability Distributions

Method : Euler

This method is based on Bromwich contour inversion integral,

f(t) =
1

2πi

∫ a+i∞

a−i∞
estf̂(s)ds

Change of variable a+ iu = s turns the integral into

f(t) =
1

2π

∫ ∞
−∞

e(a+iu)tf̂(a+ iu)du

This implies that

f(t) =
eat

2π

∫ ∞
−∞

eiutf̂(a+ iu)du

⇒
f(t) =

eat

2π

∫ ∞
−∞

(cosut+ i sinut)f̂(a+ iu)du

⇒
f(t) =

eat

2π

∫ 0

−∞
(cosut+ i sinut)f̂(a+ iu)du+

eat

2π

∫ ∞
0

(cosut+ i sinut)f̂(a+ iu)du

f(t) =
eat

2π

∫ 0

−∞
(cosut+ i sinut){<f̂(a+ iu) + i=f̂(a+ iu)}du+

eat

2π

∫ ∞
0

(cosut+ i sinut)<f̂(a+ iu) + i=f̂(a+ iu)du

Change of variable u = −w

f(t) =
eat

2π

∫ ∞
0

(cos(−wt) + i sin(−wt)){<f̂(a− iw) + i=f̂(a− iw)}dw+

eat

2π

∫ ∞
0

(cosut+ i sinut)<f̂(a+ iu) + i=f̂(a+ iu)du

⇒

f(t) =
eat

2π

∫ ∞
0

(cos(wt)− i sin(wt)){<f̂(a+ iw)− i=f̂(a+ iw)}dw+

eat

2π

∫ ∞
0

(cosut+ i sinut)<f̂(a+ iu) + i=f̂(a+ iu)du

⇒

f(t) =
eat

2π

∫ ∞
0

2 cos(ut)<f̂(a+ iu)− 2i=f̂(a+ iu) cosutdu

=
eat

2π

∫ ∞
0

2 cos(ut)<f̂(a+ iu) + 2<f̂(a+ iu) cosutdu

=
2eat

π

∫ ∞
0

cos(ut)<f̂(a+ iu)du

2

Numerical Inversion of Laplace Transforms of Probability Distributions

The integral that would be used for inverting LT is

f(t) =
2eat

π

∫ ∞
0

cos(ut)<f̂(a+ iu)

There are three main steps in this method :

1. Trapezoidal rule to discretize the Bromwich integral.

2. Use Fourier series method to replace the integral by a series with specified discretization error.

3. Apply Euler summation to accelerate convergence.

Step 1 - Trapezoidal discretization

f(t) =
heat

π
<f̂(a) +

2heat

π

∞∑
i=1

<f̂(a+ ikh) cos(kht)

Let h = π/2t and a = A/2t, we obtain

f(t) =
eA/2

2t
<f̂(A/2t) +

eA/2

t

∞∑
i=1

(−1)k<f̂(A/2t+ 2kπi/2t)

Step 2 - Periodize the function and apply Poisson summation

Consider the damped function g(t) = e−btf(t) of period T = 2π/h. Represent the periodized version of the

function as

gp(t) =

∞∑
k=−∞

g(t+ kT)

Writing the Fourier series expansion of gp(t)

gp(t) =

∞∑
n=−∞

cne
inht

where

cn =
1

T

∫ T

0

gp(t)e
−2πint/T dt

=
1

T

∫ T

0

(∞∑
k=−∞

g(t+ kT)

)
e−2πint/T dt

=
1

T

∞∑
k=−∞

∫ T

0

g(t+ kT)e−2πint/T dt

3

Numerical Inversion of Laplace Transforms of Probability Distributions

Let τ = t+ kT

cn =
1

T

∞∑
k=−∞

∫ (k+1)τ

kτ

g(τ)e−2πin(τ−kT)/T dτ

=
1

T

∞∑
k=−∞

e2πink
∫ (k+1)τ

kτ

g(τ)e−2πinτ/T dτ

=
1

T

∫ ∞
−∞

g(τ)e−2πinτ/T dτ

=
1

T

∫ ∞
−∞

f(τ)e−bτe−2πinτ/T dτ

=
1

T
f̂(b+ inh)

In the above derivation, e2πink = 1,∀k ∈ Z Thus

gp(t) =

∞∑
k=−∞

g(t+ 2πk/h) =

∞∑
k=−∞

f(t+ 2πk/h)e−b(t+2πk/h) =
h

2π

∞∑
k=−∞

f̂(b+ ikh)

Letting h = π/t and b = A/2t

f(t) =
eA/2

2t

∞∑
−∞

(−1)k<f̂(A/2t+ 2kπi/2t)−
∞∑
k=1

e−kAf((2k + 1)t)

One can see that the discretization error

|ed| = |
∞∑
k=1

e−kAf((2k + 1)t)| ≤ e−A

1− e−A

The authors desire a discretization error of 10−8 and hence A is chosen as 18.4.

Step 3 - Apply Euler summation to accelerate convergence

E(m,n, t) =

m∑
k=0

(
m

k

)
2−msn+k(t)

where

sn(t) =
eA/2

2t
<f̂(A/2t) +

eA/2

t

n∑
k=1

(−1)k<f̂(A/2t+ 2kπi/2t)

The authors suggest m = 11 and n = 15.

Even though the steps are straightforward, I think it takes a lot of ingenuity to come up with a neat and smart

way of taming discretization error.

4

Numerical Inversion of Laplace Transforms of Probability Distributions

R code for inverting Laplace Transform

inv_laplace_transform <- function(t,g){

A <- 18.4

h <- pi/(2*t)

a <- A/(2*t)

n <- 15

m <- 11

s_n <- function(n,t){

temp <- g((A+2*(1:n)*pi*1)/(2*t))

exp(A/2)/t * (1/2 *Re(g(a)) + sum((-1)^(1:n) * Re(temp)))

}

sum(1/(2^(m)) * sapply(n:(n+m), s_n,t) * choose(m,0:m))

}

One can check the code for all the standard Laplace transforms. In this document, I have used the above

function to invert all the standard examples.

L−1
{

1

s

}
= 1

time <- seq(0,10,length.out = 100)

g <- function(s) {1/(s) +1*0}

f_t <- sapply(time, inv_laplace_transform,g=g)

xyplot(f_t~time,ylab="f(t)",xlab="t",lwd=1,col = "blue",type="l", ylim=c(0,2),

main = "")

t

f(
t)

0.5

1.0

1.5

0 2 4 6 8 10

5

Numerical Inversion of Laplace Transforms of Probability Distributions

L−1
{

1

s3

}
= t2/2

g <- function(s) {1/(s^3) +1*0}

f_t <- sapply(time, inv_laplace_transform,g=g)

xyplot(f_t~time,ylab="f(t)",xlab="t",lwd=1,col = "blue",type="l",main = "")

t

f(
t)

0

10

20

30

40

50

0 2 4 6 8 10

L−1
{

1

s+ 1

}
= e−t

g <- function(s) {1/(s+1) +1*0}

f_t <- sapply(time, inv_laplace_transform,g=g)

xyplot(f_t~time,ylab="f(t)",xlab="t",lwd=1,col = "blue",type="l",main = "")

t

f(
t)

0.0

0.2

0.4

0.6

0.8

0 2 4 6 8 10

6

Numerical Inversion of Laplace Transforms of Probability Distributions

L−1
{

s

s2 + 1

}
= cos t

g <- function(s) {s/(s^2+1) +1*0}

f_t <- sapply(time, inv_laplace_transform,g=g)

xyplot(f_t~time,ylab="f(t)",xlab="t",lwd=1,col = "blue",type="l",main = "")

t

f(
t)

−1.0

−0.5

0.0

0.5

1.0

0 2 4 6 8 10

L−1
{

1

s2 + 1

}
= sin t

g <- function(s) {1/(s^2+1) +1*0}

f_t <- sapply(time, inv_laplace_transform,g=g)

xyplot(f_t~time,ylab="f(t)",xlab="t",lwd=1,col = "blue",type="l",main = "")

t

f(
t)

−1.0

−0.5

0.0

0.5

1.0

0 2 4 6 8 10

7

Numerical Inversion of Laplace Transforms of Probability Distributions

L−1
{

s

s2 − 1

}
= cosh t

g <- function(s) {s/(s^2-1) +1*0}

f_t <- sapply(time, inv_laplace_transform,g=g)

xyplot(f_t~time,ylab="f(t)",xlab="t",lwd=1,col = "blue",type="l",main = "")

t

f(
t)

2

4

6

8

10

−3 −2 −1 0 1 2 3

L−1
{

1

s2 − 1

}
= sinh t

g <- function(s) {1/(s^2-1) +1*0}

f_t <- sapply(time, inv_laplace_transform,g=g)

xyplot(f_t~time,ylab="f(t)",xlab="t",lwd=1,col = "blue",type="l",main = "")

t

f(
t)

−10

−5

0

5

10

−3 −2 −1 0 1 2 3

8

Numerical Inversion of Laplace Transforms of Probability Distributions

L−1
{

tan−1
1

s

}
=

sin t

t

g <- function(s) {atan(1/s) +1*0}

f_t <- sapply(time, inv_laplace_transform,g=g)

xyplot(f_t~time,ylab="f(t)",xlab="t",lwd=1,col = "blue",type="l",main = "")

t

f(
t)

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

−30 −20 −10 0 10 20 30

L−1
{

1√
s2 + 1

}
= J0(t)

g <- function(s) {1/sqrt(s^2+1) +1*0}

f_t <- sapply(time, inv_laplace_transform,g=g)

xyplot(f_t~time,ylab="f(t)",xlab="t",lwd=1,col = "blue",type="l",main = "")

t

f(
t)

−1.0

−0.5

0.0

0.5

1.0

−30 −20 −10 0 10 20 30

9

Numerical Inversion of Laplace Transforms of Probability Distributions

Takeaway

The method developed by the authors in the paper has been used in a ton of places. All the textbook examples

match with that of code output. In reality, most of the Laplace transforms for which inversion is desired have

no closed form solutions and hence this method is immensely useful to get numerical results. However the

authors do caution the user about the method by saying,

� When f does not have enough smoothness, one can think of performing convolution smoothing. This is

achieved by multiplying the transform f̂ by some other transform ĝ before doing the inverse

� With an increase in t, the value of n increases and this often is the case. The value of n(t) to achieve

the prescribed accuracy is often approximately a linear function of t

10

