Curse of Dimensionality

RK

July 29, 2014

Abstract

This document contains some aspects relating to “Curse of dimensionality” that often plays a devilish
role while one tries to use nearest neighbor methods.
Contents
1 Introduction

2 Why are high dimensional spaces different ?
2.1 pdimensional hypercube L

2.2 pdimensional hypersphere
3 Median distance of points from the origin
4 Toy Example

5 Takeaways

11

13

Curse of Dimensionality

1 Introduction

We frequently encounter data sets that have high number of predictor variates or covariates. There are many
ways to model such data, ranging from high bias + low variance multiple linear regression to the low bias +
high variance nearest neighbor methods. In situations where the covariates have a true non linear relationship
among them, nearest neighborhood methods work very well. Nearest neighbor methods are critically dependent
on the fact that there are enough data points around each sample point so that some sort of averaging behavior
can be computed. However when the dimensions increase, then things start to deteriorate. “What exactly
happens in high dimensional cases?”, is a question that often comes up. This note contains some pointers that

can help one understand this issue.

2 Why are high dimensional spaces different 7

2.1 p dimensional hypercube

There are many notions that seem fine in low dimensional cases but are not ok in high dimensional cases. Let’s
explore the concept of distance. Let’s start with two dimensional cube, i.e a square. We want to know the
average distance of any point from the origin. The way to go about finding this is to generate random points
in the square, compute the distance of each of the point from the origin, and then look at the distribution. The

following code plots the distribution in the case of 2 dimensional hypercube and 100 dimensional hypercube.

Curse of Dimensionality

set.seed(1234)

n <- 100000

P <=2

data <- matrix(runif(n*p,0,1), nrow = n, ncol = p)
y <- apply(data,1, function(z){sqrt(sum(z~2))3})
densityplot(“y, plot.points=FALSE,lwd=2, xlim=c(0,2))

]]]
15 -
1.0 -
2
0
c
Q
o
0.5
0.0
I I I
05 1.0 15
y

Figure 2.1: Distribution of distances from origin in p=2 dim

Curse of Dimensionality

set.seed(1234)

n <- 100000

P <- 100

data <- matrix(runif (n*p,0,1), nrow = n, ncol = p)
y <- apply(data,1, function(z){sqrt(sum(z"2))3})

densityplot(~y, plot.points=FALSE,lwd=2, xlim=c(0,8))

| | |
1.5 + o
1.0 =
2
@
c
@
(@]
0.5 L
0.0 -
| | |
2 4 6
y

Figure 2.2: Distribution of distances from origin in p=100 dim

As one can see, in the high dimensional space, most of the points are at a distance of at least 4 units away from
the origin.So, if you want to predict the value at the origin by nearest neighbor methods, there is a problem.

There are no local points.

One can easily compute the average distance between between origin and every point by basic probability.
Any point in the p dimensional hypercube is a point sampled from [0, 1]?. Denote the sample point by z; € RP.

Hence the distance from the origin to this point is

100

2
Z Zi
p=1

d(0,z) =

Now as p increases the 2;0201 22 can be approximated as E(z2?) x p = p x (1/4 + 1/12). Hence the distance as

p becomes large is \/p/3. In the case of p = 100, it is 5.7735. So I really need not have simulated to get this

idea but simulation gives a visual reinforcement that strengthens long term memory. I mean, if one sees at

Curse of Dimensionality

the above density plot, it is likely that he/she will remember that distances are highly concentrated around a

particular value.

2.2 p dimensional hypersphere

Let’s explore the same aspect in a p dimensional hypersphere. Firstly, how does one generate data on a a
circle. One naive method goes like this : Generate random numbers in a square centered at origin and then
project those points on the circle inscribed in the square. There is a problem with this approach. A visual

will more than clearly illustrate the issue

set.seed(1234)

n <- 10000

P <- 2

data <- matrix(runif(n*p,-1,1), nrow = n, ncol = p)
X <- data

y <- apply(x,1, function(z){sqrt(sum(z~2))})

x[,1] <- ifelse(y >1 , x[,11/y, x[,11)
x[,2] <- ifelse(y >1 , x[,21/y, x[,2])

xyplot(x[,1]1~x[,2], xlab = "x1",ylab = "x2", pch = 19, cex=0.5)

1 1 1 1 1
1.0 —
0.5 -
X 0.0 =
-0.5 -
-1.0 H —

T T T T T

-1.0 -0.5 0.0 0.5 1.0
x1

Figure 2.3: Generating samples by projection 2d

The visual shows that some parts of the circle are over sampled, i.e the border of the circle. An alternate

method is via “acccept reject”

Curse of Dimensionality

cond -y <=1
Z <- datalcond,]
xyplot(z[,1]1~z[,2], xlab = "x1",ylab = "x2")

X2
o
o

|

-1.0

-1.0 -0.5 0.0 0.5 1.0

Figure 2.4: Generating samples by Rejection Sampling

This method works in lower dimensions but is not efficient in higher dimensions. Why ? The major problem
with the algorithm is the running time. It grows worse than exponentially in p. The volume of a p dimensional

unit ball is
wP/2

V() = ===
®) = a2
and hence decreases more than exponentially as p — co. Hence in plain english, this means the number of

rejects will far outnumber the number of accepts.

The way to generate in higher dimensions is via multivariate normals. To give the rationale, let’s look at two

dimension case :

Let X7 and X5 be two IID standard normals. It can be easily seen that Y; = \/m and Yy =
X1/ \/m are independent variables. The former is like the radius and the latter is like the direction.
They are independent variables. You can easily do a change of variables and check that the density splits.
Hence an easy way to generate random samples in a ball is choose the radius randomly and choose the direction

randomly. Here are the details

Curse of Dimensionality

e Choosing the distance for a p dimensional hypersphere with radius R

Prsampe <) = (%)

Hence simulating Ru'/? where u ~ Unif(0,1) gives the rsumpie, the radius of the sample point

e Choosing the direction entails simulating a multivariate normal and dividing by its euclidean norm

X ~ N(0,1,)
Direction vector is 1
[1X12
Let’s look at the code
set.seed(1234)
n <- 10000
P <- 2
data <- rmvnorm(n, mean = rep(0,p), sigma = diag(p))
data <- t(apply(data, 1, function(z){runif (1)~ (1/p)*z/sqrt(sum(z~2))}))
xyplot(datal,1] “datal,2], xlab = "x1",ylab = "x2", pch = 19, cex=0.5)
1 1 1 1 1
1.0
0.5
X 0.0
-0.5
-1.0 1
I I I I I
-1.0 -0.5 0.0 0.5 1.0
x1

Figure 2.5: Distribution of distances from origin in 2 dim hypersphere

Curse of Dimensionality

Let’s compute the distribution of the distance from the origin.

set.seed(1234)

n <- 10000
P <- 2
data <- rmvnorm(n, mean = rep(0,p), sigma = diag(p))

data <- t(apply(data, 1, function(z){runif (1)~ (1/p)*z/sqrt(sum(z~2))}))
y <- apply(data,l, function(z){sqrt(sum(z"2))})
histogram(~y,nint=100, ylab="",xlab="")

0.0 0.2 0.4 0.6 0.8

Figure 2.6: Distribution of distances from origin in a circle

Curse of Dimensionality

set.seed(1234)

n <- 10000

P <- 100

data <- rmvnorm(n, mean = rep(0,p), sigma = diag(p))

data <- t(apply(data, 1, function(z){runif (1)~ (1/p)*z/sqrt(sum(z~2))}))
y <- apply(data,1l, function(z){sqrt(sum(z~2))})

histogram(~y,nint=100, ylab="",xlab="")

I I I I I I
0.90 0.92 0.94 0.96 0.98 1.00

Figure 2.7: Distribution of distances from origin in 100 dim hypersphere

The histogram shows that the distance from the point to the center of the sphere is very likely to be close to

1. Hence if you use a nearest neighbor methods, the methods are no longer local.

3 Median distance of points from the origin

This section would be mainly about verifying the closed form solution for the median distance of points from

the origin. The closed form solution is given in ESL.The problem goes like this :

Consider N data points uniformly distributed in a p-dimensional unit ball centered at the origin.
Suppose we consider a nearest-neighbor estimate at the origin. The median distance from the

origin to the closest data point is given by the expression :

d(p, N) = (1 - 0.51/N)1/p

Curse of Dimensionality

If you know a bit of linear algebra, this expression can be easily verified. One can also simulate data and verify

for a specific value of N and p. Let’s say N = 100 and we want to plot the way in which the median distance

varies as p = 1 : 100. The other good thing about using simulation is that we can also calculate mean distance

without the need to compute the closed form solution which is very tedious. The following simulation verifies

the above formula

set.seed(1234)

n <- 500

P <- 1:50

nearest.m <- (1-0.57(1/n))"(1/p)

get.nearest <- function(p){

data <- rmvnorm(n, mean = rep(0,p), sigma = diag(p))
data <- t(apply(data, 1, function(z){runif (1)~ (1/p)*z/sqrt(sum(z~2))}))
res <- apply(data,1,function(z){sqrt(sum(z~2))})

ifelse(p==1, min(data~2) ,min(res))

sim.median <- sapply(1:50, function(z){
quantile(replicate(100,get.nearest(z)) ,prob=0.5)

b

sim.avg <- sapply(1:50, function(z){
mean(replicate(100,get.nearest(z)))
b

compares <- data.frame(yl = nearest.m[1:50],

y2=sim.median,

y3 = sim.avg, p = p[1:50])

xyplot(yl + y2 + y3~p, data = compares, type=c("1","g"), ylim = c(0,1.1),

xlab = "p", ylab="distance",
auto.key = list(columns = 3,

text = c("closed form","simulated median",'"simulated mean ")),

10

Curse of Dimensionality

closed form o simulated median © simulated mean ©

1.0 =

0.8

0.6

distance

0.4 —

p

Figure 3.1: Mean and Median distance from the origin as p increases

4 Toy Example

In this section, I will work through a toy example given in ESL. Let’s say the true data generating process for

the predictor variable is
Y = f(X) = e 8IIXII2

without any measurement error. We use the 1-nearest-neighbor rule to predict gy at the test point xy = 0.

set.seed(1234)

n <- 1000

P <-1:10

get.nearest <- function(p){
data <- matrix(runif (n*p,-1,1), nrow = n, ncol = p)
v <- exp(-8xapply(data,l, function(z){(sum(z"2))1}))
res <- apply(data,l,function(z){sqrt(sum(z~2))})

min.point <- ifelse(p==1, which.min(data"2),which.min(res))

y [min.point]

}

sim.result <- sapply(p, function(z){
temp <- replicate(100,get.nearest(z))
variance <- var (temp)

11

Curse of Dimensionality

squared.bias <-(mean(l-temp)) "2
mse <- variance + squared.bias

return(c(squared.bias,variance, mse))

1)
bias.var <- as.data.frame(t(sim.result))
names (bias.var) <- c("squared.bias","variance", "mse")
mtheme <- standard.theme("pdf", color=TRUE)

mtheme$superpose.line$lwd <- 2
xyplot(squared.bias + variance + mse”p, data = bias.var,
type=c("1","g"), ylim = c(0,1.1),

xlab = "p", ylab="error",lwd=2,

par.settings=mtheme,

auto.key = list(columns = 3, points = FALSE,
lines = TRUE,

text = c("squared bias","variance","mse")),
b

squared bias variance mse
| | | | |
1.0 =
0.8 =
§ 0.6 =
@
0.4 - -
0.2 L
| I I I I
2 4 6 8 10
p

Figure 4.1: Squared Bias, Variance and MSE of 1 nearest neighbour method

The toy examples shows the MSE levels off to 1 and bias squared also levels off to 1, the maximum error
possible. This toy example clearly shows that one must be careful in using nearest neighbor methods in high

dimensional cases.

12

Curse of Dimensionality

5 Takeaways

Our intuition does not serve well in high dimensional spaces. Hence there are few issues with using nearest
neighbor methods on high dimensional data. Firstly, the methods that involve capturing a fixed neighborhood
around the points gives high variance for the fit. Secondly, if you relax the fixed neighborhood criterion and
try to capture a specific number of neighbors, the methods are no longer local. Hence it pays to think through
these issues on whatever dataset you are working on. You might expect low variance fit but the curse of

dimensionality shows up and you get a high variance fit.

13

	Introduction
	Why are high dimensional spaces different ?
	p dimensional hypercube
	p dimensional hypersphere

	Median distance of points from the origin
	Toy Example
	Takeaways

