
Introduction to Modern Bayesian Econometrics (Tony Lancaster)
Book Review

I had come across quite a few references to this book and gathered that it is a great resource to start thinking about
Bayesian methods in econometrics. I had gone through a few books on the application of Bayes to statistics in general in
the past few years and was hoping to find something on time series. I think I was expecting a Hamilton level treatment of
time series from this book, which I shouldn’t have. It is primarily a book that discusses Bayes under econometric settings
and time series happens to be just one of them. In fact time series is covered in the very last chapter of the book. So,
if you are looking for mainly Bayesian time series concepts from this book, you will not find substantial material in this
book. However if you are interested in the application of Bayes to econometric models in general, this book is awesome.
It covers all the types of models that a typical econometrician would have to deal with. This document summarizes the
main points from the book.
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Preface

The author mentions in his preface that he was first introduced to Bayesian analysis in a talk by Dennis Lindley in
1974. Post the talk he tried doing a poisson regression problem in his research work that required a high dimensional
integration. He gave up as the solution seemed extremely complicated. After 20 years the author revisits the problem
and solves it easily. This motivation to revisit came from MCMC revolution that made Bayes analysis accessible. Any
professor who gets kicked about a technique starts writing papers and starts offering courses. So, did the author. This
book is a natural outcome of the author’s immersion in Bayes land. The mention of Lindley reminds me of the historical
narrative in the book , “The theory that would not die” by McGrayne Sharon Bertsch. I quote some relevant points
about Lindley verbatim from the book

When Lindley was a boy during the German bombing of London, a remarkable mathematics teacher named
M. P. Meshenberg tutored him in the schools air raid shelter. Meshenberg convinced Denniss father, a roofer
proud to have never read a book, that the boy should not quit school early or be apprenticed to an architect.
Because of Meshenberg, Dennis stayed in school and won a mathematics scholarship to attend Cambridge
University. Later in the war, when the British government asked mathematicians to learn some statistics,
Lindley helped introduce statistical quality control and inspection into armaments production for the Ministry
of Supply.

After the war he returned to Cambridge, the British center of probability, where Jeffreys, Fisher, Turing, and
Good had either worked or studied. There Lindley became interested in turning the statisticians’ collection of
miscellaneous tools into a “respectable branch of mathematics”, a complete body of thought based on axioms
and proven theorems. Andrei Kolmogorov had done the same for probability in general in the 1930s. Since
Fisher in particular often arrived at his ideas intuitively and neglected mathematical details, there was plenty
of room for another mathematician to straighten things out logically.

In 1954, a year after publishing a lengthy article summarizing his project, Lindley visited the University
of Chicago, only to realize that Savage had done an even better job of it. Although Lindley and Savage
would soon become leading spokesmen for Bayes’ rule, neither realized at this point they were headed down a
slippery slope toward Bayes. During this exciting period in 1950s Chicago, Savage and Allen Wallis founded
the university’s statistics department, and Savage attracted a number of young stars in the field.

Lindley moved back to Britain, where for many years he was the only Bayesian in a position of authority. In
time he built not just Bayesian theory but also strong Bayesian research groups, first at the University College
of Wales in Aberystwyth and then at University College London. In an era when many sneered at Bayes, it
took courage to create Europe’s leading Bayesian department. Often the only Bayesian at meetings of the
Royal Statistical Society and certainly the only combative one, Lindley defended Bayes’ rule like a fearless
terrier or a devils advocate. In return, he was tolerated almost as comic relief. “Bayesian statistics is not a
branch of statistics”, he argued. “It is a way of looking at the whole of statistics”. Lindley became known as
a modern-age revolutionary. He fought to get Bayesians appointed, professorship by professorship, until the
United Kingdom had a core of ten Bayesian departments.

In 1977, at the age of 54, Lindley forsook the administrative chores he hated and retired early. He celebrated
his freedom by growing a beard and becoming what he called “an itinerant scholar” for Bayes’ rule.Thanks to
Lindley in Britain and Savage in the United States, Bayesian theory came of age in the 1960s. The philosophical
rationale for using Bayesian methods had been largely settled. It was becoming the only mathematics of
uncertainty with an explicit, powerful, and secure foundation in logic. How to apply it, though, remained a
controversial question. Lindley’s enormous influence as a teacher and organizer bore fruit in the generation
to come, while Savage’s book spread Bayesian methods to the military and to business, history, game theory,
psychology, and beyond. Although Savage wrote about rabbit ears and neon light in beer, he personally
encouraged researchers who would apply Bayes rule to life-and-death problems.

I think it is always better to get some idea about the people who struggled to put Bayesian practices amongst us. This
kind of awareness makes one appreciate better the various principles that one comes across in the textbook.

Introduction

In the intro to the book, the author says that the book is targeted to a graduate student in applied economics and the
math prerequisites to the book do not extend beyond the introductory calculus and rudiments of matrix algebra. The
author uses several S code fragments to simulate data and explain Bayesian techniques. The core of the book is given
in Chapter 1, Chapter 2 and Chapter 4. Chapter 1 talks about Bayesian algorithm. Chapter 2 on prediction and model
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criticism and Chapter 4 on MCMC method. The author advises readers to go over these three chapters and then sample
from the remaining chapters according to their interests. Personally I think it is better to read the book in a linear fashion
as there is a semblance of gradual understanding of Bayes techniques as one goes along.

1 Bayesian Algorithm

1.1 Econometric Analysis Vs Statistical Analysis

The chapter starts by describing the basic difference between an econometric analysis and statistical analysis. An econo-
metric analysis is the confirmation of an economic model with evidence. Let’s say an econometrician has a model
C = α+ βY for the observables(data) C, Y and parameters θ = (α, β). Any value of θ, defines a particular structure
and the set of structures under consideration is said to be indexed by parameter θ. So, these words should be flash in
your mind when you think of econometric model, i.e { data, parameters, structures, indexed by a parameter }

The objective of an econometric analysis is

1. Whether amongst the parameters in the parameter space, a model such as C = α+ βY is applicable ? This means
questioning whether structures defined by the model are consistent with the evidence.

2. Given the validity of the above step, what are the probability of the different structures defined by the model?

The practice of econometrics is usually in the reverse order. We begin by presuming that our model is consistent with the
data and ask for the most likely structure in the light of the evidence. In traditional econometrics, this involves following
a most likely structure θ ∈ Θ that is in some sense true. In a Bayesian analysis, this step involves using the data to form a
probability distribution over structures. The chapter brings out a difference between econometric analysis and statistical
analysis. Statistical analysis typically involves reducing a set of numbers to a form that can be easily comprehended. A
Statistician summarizes data by calculating means, standard deviations, trends and regression lines. He typically proposes
and applies statistical models as simplified accounts of possible ways in which his data could have occurred. There is one
profound difference between statistics and econometrics.

The econometrician is primarily concerned with the analysis of the behavior of economic agents and their
interactions in markets and the analysis of data is secondary to that concern. But markets can be in, or near,
equilibrium; economic agents are presumed to be maximizing or minimizing some objective function; economic
agents are presumed to be know relevant things that the econometrician does not. All these considerations
tend to be fundamental to an econometric analysis and dictate the class of models that are worth considering.
They make the results of an econometric analysis interpretable to the economist and give parameters solid
meaning.

If one reads a few papers by econometricians, there is inevitably a equilibrium model that one is trying to propose or
validate or verify or criticize. A statistician can relate parameters to some structural parameters but it pays to remember
that that is not what drives his analysis. I was listening to a talk by Hasbrouck that mentions that the current era of
market microstructure quants do not care about equilibrium models. All they want is to capture the pattern and not
worry about a grand unifying theory of the patterns.

1.2 Bayes Theorem

The chapter introduces Bayes theorem

pX|Y (x|y) =
pY |X(y|x)pX(x)

pY (y)

and emphasizes that

The formula does not dictate what your beliefs should be it only tells you how they should change.

The term in the numerator, the joint distribution can be termed as econometric model. It is the product of likelihood
and prior. An econometric model is complete only when you specify the likelihood and the prior. The likelihood function
describes a way that you would observe the data given a specific θ ∈ Θ. One typically hears the words , “fixed” and
“random” variables in the context of frequentist stats. In the Bayes world, all objects are assigned a probability distribution
and only distinction between the objects is whether they will become known for sure when the data is in. Whatever is
unknown when you have collected the data fall under the bucket - “parameters”. This means that the things that can be
considered as parameters are sub theories of a grand theory, sub parameters of a particular structural model, etc.
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1.3 Bayesian Algorithm

1. Formulate your economic model as a collection of probability distributions conditional on different values for a model
parameter θ ∈ Θ.

2. Organize your beliefs about θ into a prior probability distribution over Θ.

3. Collect the data and insert them in to the family of distributions given in Step1.

4. Criticize your model.

1.4 Components of Bayes Theorem

• Likelihood function : Remember that this is not a probability distribution and hence there is a usage of l(θ; yobs)
and not l(θ|yobs). Choice of likelihood must express the economic model that lies at the center of an econometric
investigation. The chapter gives five examples and likelihood functions are drawn for each of the five examples. The
first three examples are linear regression models , the fourth example is a probit model. The fifth example serves
to point out that there can be many parameters of interest and one can draw likelihood functions for the same and
draw inferences about the parameters.

– A great way to verbalize likelihood function is that it is a framework to confront an economic model with
reality.

– The great thing about Bayesian analysis is that inference about the parameters is not dependent on the covert
intentions of the experimenter. The first time I came across an example about this is from John Kruschke’s
book. Imagine that you see the data as 20 coin tosses and 7 Heads, there could have been two types of thought
process in an experimenter’s mind. One is toss the coin 20 times and record the number of heads, the other
is toss the coin until he sees 7 heads. From a frequentist point of view, the inference about the biasedness of
the coin differs. From a Bayesian analysis perspective, the inference procedure remains same and it does not
depend on the thought process of the expeimenter. It is agnostic to the covert intentions of the experimenter.
This was an example that really made me sit up and become a big fan of Bayesian analysis since then.

– What’s going on in the above case ? Well, the likelihood function for each of the above scenarios is different
but the kernel is the same. Here is where the powerful principle comes in to action. Likelihood principle
states that likelihoods that are proportional should lead to the same inferences(given the same prior). Notice
that the data that might have been observed in the two described cases are quite different. What matters for
a Bayesian are the data that were observed; the data that might have been seen but were not are irrelevant.

– Should one use likelihood function alone to do inference is a debatable question ? Fisher’s likelihood method
completely revolves around this question. Yudi Pawitan’s book, “In all likelihood” covers all aspects of Fischer’s
theory in a very accessible manner. A few years ago, I was bed ridden for about a month. Post recovery, I
needed something to get back my energy levels and Yudi Pawitan’s book breathed a new life in to my sleeping
brain. I have fond memories of working through the book. If you are looking to gain a solid understanding of
likelihood methods, I heartily recommend Pawitan’s book.

– If you rely solely on the likelihood function to draw inference, there could be flat spots in the likelihood profile
that might make it impossible to identify the parameters. Bayesians do not have to worry about flat likelihood
functions because they do not maximize likelihood functions. They combine with the priors to compute the
posterior density which is a proper distribution.

– IID is something that is routinely used in frequentist analysis. But this seems to imply that somewhere out
there, is a machine that is similar to the random number generator on your computer, and capable of producing
a stream of numbers that appear as if they were independent draws from a marginal posterior distribution.
From a subjective point of view this does not make much meaning. Hence the preferred way is to follow
Exchangeability principle that says that

A sequence of random variables Y1, Y2, . . . is called exchangeable if its joint probability distribution is
unchanged by permutation of the subscripts.

With this assumption, De Finetti showed the it implies the existence of a likelihood and prior. Here is some
information about De Finetti from Sharon Bertsch’s book:

An Italian actuary and mathematics professor, Bruno de Finetti, also suggested that subjective beliefs
could be quantified at the racetrack. He called it“the art of guessing”. De Finetti had to deliver his
first important paper in Paris because the most powerful Italian statistician, Corrado Gini, regarded
his ideas as unsound. De Finetti, considered the finest Italian mathematician of the twentieth century,
wrote about financial economics and is credited with putting Bayes subjectivity on a firm mathematical
foundation. De Finetti predicted a paradigm shift to Bayesian methods in 50 years, post- 2020.
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– The thing that is usually forgotten is that “likelihood” is your likelihood. It is as subjective as the prior
distribution.

• Prior : The prior represents your beliefs about θ in the form of a probability distribution.

– Tentative Priors : These are priors you want to use to answer the question - “ what if I had used this prior’ ?”

– Encompassing Priors : These are priors to take care of the expert opinions

– Conjugate Priors : These are priors taken in such a way that multiplication of prior with likelihood produces
a posterior that has the same family as the prior.

– Improper Priors : These distributions are not probability distributions. However in some cases, it is unnecessary
for a prior to be proper.

– Jeffreys Priors : These priors are invariant to parameter transformation and are chosen in such a way that the
prior is proportional to the square root of the information matrix.

p(θ) ∝
√
Iθ

where

Iθ = −E
(
∂2 log l(θ; y)

∂θ2

)
Jeffrey’s prior sometimes gives rise to improper priors. Jeffrey’s prior involves taking expectations with respect
to y which is a repeated sample calculation, and many writers take the view that such calculations are, in
general, not well defined and they certainly violate the likelihood principle. It is also not very clear that
Jeffrey’s prior produces minimally informative priors.

– Reference priors : This class of priors come from information theory. Shannon used Bayes a lot and one of
his many ideas was that if the prior and posterior do not change, then one has learnt nothing from the data.
So, in one way you can characterize the information based on the divergence between prior and posterior
distributions. This has lead to a class of reference priors where the prior is chosen so that contribution of prior
to the posterior distribution is minimal.

– Default Priors : These are the type of priors that one wants to use without too much of thinking. For example
linear regression coefficients are usually taken to be uniform on the real line, and normal precision to be such
that log precision is uniform on the real line, so that the precision itself has a distribution 1

τ on the real line.

– Hierarchical priors : These are cases where an overarching distribution drives the parameter in a model, kind
of like a meta distribution. When dealing with a vector of parameters it is often persuasive to think about
your prior distribution hierarchically. Let’s say there is a situation where each agent has a specific value of θi,
then it makes sense to have another distribution driving this family of θi’s.

– Priors for multidimensional parameters - While the priors for scalar parameters are well developed, the priors
for vector based parameters is a work in progress. For example in a VAR model, one needs to use Litterman
priors to get sensible probability distributions over the parameters. In one sense it is an active area of research.
The author does show a way out for specific problems where the likelihood can be separated in to functions,
each of which is a function of a only a single element of the vector parameter.

– Posterior is obtained by multiplying prior and likelihood. So the form of prior that matter is only the region
where likelihood is prominent. In the range of θ’s where the likelihood is negligible, the exact form of prior is
irrelevant.

• Posterior distribution. There are many ways to report a posterior distribution.

– Draw it

– Report Moments

– Report Highest posterior density region

– Calculate Marginals

– Asymptotic properties of Posterior distributions - For large n, the posterior distribution is approximately
normal with mean equal to θ̂ and precision matrix equal to −H(θ̂) where θ̂ is the posterior mode and H,
the hessian, the matrix of second derivatives of logarithm of the posterior density function. Under a uniform
prior for θ, the posterior distribution is equal to the likelihood function and so −H(θ̂) is equal to the negative

second derivative of the log likelihood evaluated at θ̂. The expected value of the negative hessian of the log
likelihood with respect to the distribution θ is the information matrix. In practice, Iθ(θ̂) = −H(θ̂) will be
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close when the observations is relatively large. What is important is that this multivariate approximation is
applicable to any transformation of the parameter space. Some criticize that the normal approximation is
not all that valid as there are many instances where even though the sample size is large, the multivariate
normal approximations do not hold. At this point in the book I start to wonder the very need for asymptotic
approximation. Shouldn’t the multivariate posterior density in whatever form it is , be accepted as is. Who
needs an asymptotic approximation which sounds more frequentish ?

An important point that is often implicitly understood is that Bayesian analysis and Frequentist analysis gives rise to
same inference when the datasets are huge. Why is it so ? The logic is explained clearly

log p(θ|y1, . . . , yn) = log l(θ; y1, . . . , yn) + log p(θ)

The above relationship show that as the sample size increases, the dominance of prior fades away and the likelihood starts
to dominate. A related question that crops up is that, if you make sample size to very big, do the posterior distribution
collapse to a point. This is indeed the case says a particular theorem in this chapter.

1.5 BUGS

The chapter gives a first taste of BUGS by estimating the parameters of a probit model. The data are simulated and
the posterior distribution of parameters are compared with those of true values. Even though the chapter shows that
the whole procedure works, the author suggests that the reader should be patient enough till Chapter 4 when the entire
rationale of BUGS procedure of sampling from a posterior distribution of a parameter is explained.

1.6 Decision theory

As they say, a Bayesian needs three things : prior, likelihood and a loss function. In examples where loss functions is not
stated, it is implicitly assumed to be squared loss function, in which case the posterior mode of the distribution becomes
the best point estimate of the parameter. Given a posterior distribution, different loss functions can give different point
estimates. Christian’s book “A Bayesian choice” has an extensive discussion about decision theory and builds up entire
Bayesian statistics ground up using Decision theory fundas.

1.7 Summary

The Bayesian approach to econometrics is conceptually simple and, following the recent developments, computationally
straightforward. By using the Bayesian algorithm, you must formulate your theory as a conditional probability statement
for the data that you are about to see and a prior distribution over the parameter of that statement. This is equivalent
to making a simple statement about what you think the data should look like based on your theory. You can then study
the data and determine whether the model is, at least roughly, consistent with the evidence, and , if it is, you proceed to
revise your views about the model parameters. Whether the data are consistent with your model or not, you will have
learned something.
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2 Prediction and Model Criticism

In the case of a frequentist analysis, one usually criticizes the parameter estimates and confidence intervals. In the case
of Bayes, the object of criticism is usually the posterior distribution. The common criticism is that there is something
wrong with the posterior distribution. One can take a few basic steps to correct this criticism like checking data input ,
discarding the model, questioning the dogmatic assertions about likelihood and the prior.

2.1 Methods of Model Checking

There are two ways of checking the dogmatic assertions of your model. First is to take another look at the data. May be
your beliefs are completely wrong. May be the assumption of conditional independence needs to be checked. Typically
the checks here are graphical in nature OR you compute some test statistic and appeal to asymptotics to verify the
assumptions. The second way to check the model is to enlarge the model and see if additional parameters make the joint
posterior distribution over the parameters more believable.

2.2 Informal Model Checks

This section introduces the basic QQ plot for checking the normality of residuals. Very popular quick and dirty method
to check model assumption deviations.

2.3 Uncheckable beliefs

There are two types of beliefs represented in any model. The first are the dogmatic beliefs such as that the regression is
linear, the errors are independent and so on. The other are the non-dogmatic beliefs as represented by prior distributions
that are never exactly zero over the natural parameter space. The non-dogmatic beliefs are revised by the evidence
according to Bayes theorem and you can see how the evidence has altered your views. The dogmatic beliefs can be
checked by looking at the data to see if there is evidence that they are false. There are some types of dogmatic beliefs that
can never be checked and the chapter presents one such example which goes in to the detailed behind non-identifiability.

2.4 Prior Predictive Check

The basic idea is to use the prior predictive distribution

p(y) =

∫
p(yθ)p(θ)dθ

Simulate data using prior predictive distribution, form a test statistic so that you get a sampling distribution of test
statistics. Subsequently do a test to check whether the observed test statistic looks radically different from the sampling
distribution. Here you can probably use some frequentist techniques to do the test. The test statistic could also be a
function of data and parameters in the model. In that case you basically the following procedure :

1. Simulate a value of θ from p(θ)

2. Based on this θ, simulate a y value from p(y|θ)

3. Based on the above two values , get hold of the test statistic T (Y, θ)

4. Compute T (yobs, θ)

5. Examine the frequency distribution of realizations of T (Y, θ)− T (yobs, θ) to see whether zero is a probable value

In the above procedure it is important to realize that if you take improper priors, then you cannot do a prior predictive
check. Fair enough. If you do not have a clue about the prior, i.e. you don’t have any knowledge about the parameter, then
you have to take data as it is. You don’t have any prior notion against to check. Hence one of the typical recommendations
is that it is better to think hard and start with a reasonable prior so that you can at least do a prior predictive check.
The author suggests a nifty procedure to get around this vague prior stuff. You divide the sample in to two parts, the
test sample and the training sample. In training sample, use the vague prior and compute the posterior density, p(θ|yT ).
You then use this posterior density to get a θ and then use the likelihood function to draw a random data. For each of
these replicated samples, compute whatever statistic you wish to predict. Compare the sample value of the statistic to
the predictive distribution. One can understand the above technique after going through the example provided by the
author. Though this technique seems nice, there are some questions that need to be answered such as how to select the
data for training and test samples.
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2.5 Posterior Predictive Check

This is a method where one uses the posterior distribution to simulate set of data points.

p(ỹ|yobs) =

∫
p(ỹ|yobs, θ)p(θ|yobs)dθ

The algorithm goes like this

1. Sample θ from its posterior distribution

2. Insert such a realization into the conditional distribution, given θ, and yobs, if necessary, and sample ỹ from this
conditional distribution.

3. Repeat the above steps to have many realizations from p(ỹ|y)

Once you have the data based on the above algorithm, there are a couple of ways to do posterior predictive check. Ah!
the p values appear again. These p values have been advocated by Gelman in his book on “Bayesian Data Analysis”.

p = P (T (yobs, θ)− T (yrep, θ) < 0|yobs)

The use of posterior predictive distribution for model checking is open to the criticism that it violates the likelihood
principle, which it does, and it is therefore strictly inconsistent with the Bayesian approach. Views among Bayesian
statisticians are divided and many prefer to compute posterior odds instead.

2.6 Posterior Odds and Model Choice

The chapter then talks about one of the most powerful tools in Bayes. Comparing various models. I learnt about
Adrian Raftery’s work on Model choice and Occam’s Window from Sharon Bertsch’s book. Somehow I have always like
to understand stuff after reading around the subject. In that way, the book, “The theory that would not die” was a
fascinating book that made me start exploring the Bayesian world. Ok, now coming back to the chapter. I think the stuff
in this book is extremely useful to a quant who deals with data where a pattern can be explained by several competing
models. How do you compare competing models ? How do you cull information from several models and provide a forecast
? This section provides a door way in to the fascinating world of Bayesian Model Selection and Model averaging.
Let’s say that you are considering J models. One can use Bayes to compute the posterior probability of each model given
the data. These posterior probabilities can be used to compute Bayes factor. The Bayes factor is the ratio of the prior
probabilities of the data under the different models.

P (M1|y)

P (M2|y)
=
P (y|M1)

P (y|M2)

P (M1)

P (M2)

Typically the denominator is taken as a baseline model and Bayes factor is computed for all the models considered. These
Bayes factors are analyzed and the the model which has the highest Bayes factor is usually selected. In the case of
prediction exercise where the researcher is more concerned about the predictive accuracy, model averaging is done. This
model averaging is introduced via the following equation :

p(ỹ|yobs) =
∑
j

p(ỹ,Mj |yobs) =
∑
j

p(ỹ|Mj , y
obs) p(M)j|yobs)

2.7 Enlarging the Model

In a frequentist setting usually ANOVA kind of testing involves testing nested models. In the Bayes case, there is no
need for such a restriction. You can compare any two models with out worrying whether they are nested or not. The
chapter ends with a nice example where the conditional independence with constant success probability of a sequence
of Bernoulli random variables can be tested by enlarging a model with conditional dependence and then checking the
posterior distribution of the conditional dependence variables. This is pretty cool stuff. I really like this example. It can
be easily cast in to a simple question - Imagine you are given a sequence of Heads and Tails and you want to check whether
the trials are conditionally independent with constant probability of a success. Writing down the 2 step Markov chain
and then computing the posterior distribution of transition probabilities is a really nice method to answer this question.
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2.8 Summary

Informal, usually graphical, methods for taking a critical look at your results can be helpful, and quick ways to find out
what is going wrong, if anything. Fomal method for checking your model, making predictions and choosing among models
are all based on the predictive distribution and the basic formula is

p(y) =

∫
p(y|θ)p(θ)dθ

Ideally, model checking involves looking at the data to see if it is as you thought it would be, particularly looking at
aspects of the data about which your prior beliefs had been dogmatic. What you thought about the data would be like is
measured by our prior predictive distribution, and you can construct test statistics to see whether any discrepancies you
find are sufficiently significant to warrant changing the model, or abandoning it.
Model comparison involves comparing the predictions of your data provided by alternate models. If you have to choose a
single model then, naturally, you would choose that one which has the highest probability given what you have observed.
If you don’t have to choose a single model but want something to use for making forecasts, for example, then you can
average the models under consideration, assigning each model a weight equal to its posterior probability. This is called
model averaging. The most general way of comparing and choosing between models is by the construction of Bayes
factors. In practice, it is more common to use a more restrictive approach that involves nesting your model within some
larger one and studying the posterior distribution of the additional parameters.
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3 Linear Regression Models

3.1 Connection between an Econometric Model and Regression Model

The chapter begins by explaining the connection between a regression model and an econometric model. In an econometric
model, the researcher typically wants to explore the relationship between y and x using some function g such that
g(y, x) = 0 is the equilibrium condition. The relation in theory is a deterministic one. To allow for the fact that for same
value of x, there could be different y’s, the econometrician modifies the relation to g(y, x) = ε where ε is a random variable
such that E(ε) = 0. One of the most popular forms of g is the linear form. In that case y = β0 + β1x + ε becomes the
model that is being fitted. Even if you happen to specify the distribution of ε, the above model cannot be worked with,
as the joint distribution of two variable (y, x) cannot be determined by one variable’s distribution. This means you need
an extra condition to make the model tractable. The extra condition that makes an econometric model in to regression
model is mean independence of ε, i.e E(ε|x) = 0. Thus the econometric model becomes E(y|x) = β + β1x.

3.2 Linear Regression Model

The simple restriction of zero correlation might seems sufficient. But it isn’t for some cases, especially in the case where
you want to concur with the traditional frequentist results. E[ε|X] = 0 is not enough as it merely says the variable are
uncorrelated. To do Bayesian analysis, you need the joint distribution of p(y,X|β) and this can be obtained by the
joint distribution of (ε,X) by making an even more stronger assumption. What is required is independence of the two
variables ε,X. This enables one to use the fact that p(ε,X) = pε(ε)p(X) and get to p(y,X|β) = pε(y − Xβ)p(X|β).
While writing p(y,X|β, τ), the term P (X|β) can be conveniently absorbed in to the factor of proportionality if X can be
assumed as strictly exogenous.
So, the assumptions that make a regression model tractable in Bayes setting are

• ε and X are independent conditionally on the parameters of the model

• X is marginally independent of the parameters of the model

The assumption of normality, conditional independence, and homoscedasticity constitute a normal linear model. This
model is written differently by statisticians and econometricians. An econometrician writes it as

y = Xβ + ε, ε|X,β, τ ∼ n(0, τIn)

whereas a statistician writes it as
Y |X,β, τ ∼ n(Xβ, τIn)

Most econometricians view the above regression version of an econometric model as debatable and instead would like to
see the ε term well laid out. Can you choose a prior that makes the Bayes and Frequentist analysis give the same results ?
Of course. The following default vague prior for (β, τ) gives rise to posterior distribution where modes of these parameters
concur with the frequentist estimates.

P (β, τ) ∝ 1/τ, −∞ < β <∞, τ > 0

Given the posterior distribution p(β, τ |y,X), one can find the marginal distribution of β and τ by sampling from the joint
posterior. However for the case of default vague prior, the marginal distributions of the parameters can be analytically
worked out. The marginal distribution of β is a multivariate t distribution and the marginal distribution of τ is a
gamma distribution. Remember that errors have been assumed to be distributed as multivariate normal with hierar-
chical prior on τ . Once these distributions are known , you can plot the Highest posterior density intervals and in this
case where priors on β and τ are assumed to be vague, the computations will concur with the frequentist intervals for the
regression models.

Now assume that you want to test some restrictions Rβ = r. The suggested approach is to assign a random variable
δ = Rβ − r and then draw the highest posterior region and check whether δ = 0 lies in the region. The Bayesian way of
doing things is to compute p(δ|data) which in the simple case happens to be a multivariate t and then come up with a
test statistic pertaining to multivariate t that can be used to compare with any of the standard distributions such as
F distribution. This smells like frequentist setting. In any case there is another way to check the restrictions. Build two
models:one with restrictions , another without restrictions and check the Bayes factor. Depending on the Bayes factor
you can conclude whether the restrictions make sense.

Vague priors is merely a starting point. You can use whatever priors you want to use. The downside is that the posterior
might not be analytically solvable and you might have to resort to MCMC. One exception is the use of natural conjugate
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prior. Using this prior with some more additional restrictions on the covariance structure of prior β0,one can come up with
a closed form. The problem with using this approach is that you are assuming that there is a dependency between β0 and τ .

The chapter reiterates a point that I keep forgetting from time to time, i.e. the linkage between the joint posterior
distribution and multivariate normal. When the sample size is large, a joint posterior distribution with mean equal to
the maximum likelihood estimate and precision equal to the negative hessian matrix at the estimate.

θ ∼ n(θ̂,−H(θ̂))

So you basically write down the likelihood for the regression model and then compute the MLEs, evaluate the negative
hessian matrix. This gives the precision of the multivariate normal distribution that approximates the posterior distribu-
tion. A first flavor of BUGS is given in this chapter where a few lines of BUGS code can be used to work out the posterior
distributions and marginal posterior distributions of a linear regression model. The takeaway from this section is that
linear regression model is based on a rather restrictive hierarchical prior for the regression errors, namely that they are
independent of the covariates and iid lack of error correlation.

3.3 Multinomial Approach to Linear Regression

This section talks about using a multinomial distribution with a Dirichlet prior. The section concludes saying that the
multinomial method has so far proved unappealing to most Bayesians, who prefer to adopt more restrictive parameteric
models, check the restrictions and then try to relax some of the model’s dogmatic features.

3.4 Checking the Normal Linear Model

The first thing that comes to my mind for checking normality is the QQ plot. In a single R command, you can get a
sense of whether the distribution can be approximated to a normal distribution. For a Bayesian mode of thinking, this
plot is not enough as it never captures the variability associated with the ε. Ideally if you knew the true β , then you
can compute the residual and check the normality assumption of ε. In practical situations where true β is unknown, one
needs to build this uncertainty in testing procedures. Hence sampling from a posterior distribution of (β, τ) and then
computing a numerical summary that captures the heteroskedastic effects is a far better alternative testing procedure.
After going through this section, it is obvious for any reader that Bayesian analysis gives this flexible framework to test
out all the assumptions in a robust way.

3.5 Extending the Normal Linear Model

In this section, the author cites some common criticisms to normal linear model and then shows some of the techniques
to respond to such criticisms. First involves addition of covariates which will make the assumption of mean independence
more strong. In the case where there are some covariates that are lurking in the error term, the mean independence of
zero correlation between the error term and the covariates is incorrect. The other way to relax the model is to incorporate
a covariance structure for the error term. This is usually called Generalized Least Squares. If you know the true value of
the covariance matrix, then a simple algebraic manipulation shows that the same linear regression framework can be used.
In the case where the covariance structure is of a diagonal form, then the regression is called weighted least squares model.
Another way to handle weighted least squares type of set up is to assume that each of the weights are a realization of a
gamma distribution, i.e build a hierarchical prior for the error covariance matrix. In this case the marginal distribution
of ε can be analytically worked out to be a multivariate t instead of the usual multivariate normal.

Given a regression model, what is the way to check whether the error are correlated? The typical answer from a fre-
quentist guy is to plot the ACF or compute the Durbin-Watson statistic etc. The chapter shows an alternate way to
handle the problem. It assumes a error structure for the residuals and then computes the posterior distribution of the
parameters for the error structure. It then analyzes whether the error structure makes sense and concludes whether the
data is correlated or not. The BUGS code needed to do this is just a few lines more than the original BUGS code for
the normal linear regression case. The section then talks about semi-parametric models where the model is not a set of
unknown parameters but contains some unknown functions of the parameters. To be more explicit, they can be called
partially linear models. These models fall under the umbrella term Generalized Additive Models. The author however
mentions that the Bayesian software needed to do gam has not evolved much and it is much more convenient to do gam

modeling via frequentist methods. I have a book lying in my inventory about gam. I have to find time to go over it someday.

The chapter ends with a discussion of Bayes factor that can be used to compare two models. When the data is large, the
Bayes factor approximates to the BIC factor that is usually reported in many of the software packages. The advantage
of using Bayes factor is that the models need not be nested for comparison. In the frequentist literature, usually models
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are nested to compare the relative strengths. In the case of Bayes, one is relieved from this restriction. In fact the time I
read about this aspect was from the amazing write up by Adrian Raftery on Model selection.

3.6 Summary

This chapter deals with linear regression models in which the error terms are mean independent or distributed indepen-
dently of the covariates. A Hierarchical model for the error in which errors are independently normally distributed with
common precision are assumed and posterior distributions are found. In the case of a default vague prior, the posterior
distributions have closed forms. For informative priors, the posterior distributions can be generated via BUGS. The
chapter then extends the normal linear model by relaxing the error structure, adding functional forms to the covariates
appearing in the model etc. All these additions can be modeled using a few lines of BUGS code, excepting gam models,
for which frequentist tools are suggested.
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4 Bayesian Calculations

There are typically four ways to sample from a distribution.

• Built in routines - The standard distribution random generators are usually built in to many of the existing softwares

• Effectively available distribution - These are cases when you can condition of the variables to generate random
samples. For example to generate a sample from f(x, y) and say that you can generate random samples from f(x)
and f(y) easily. With these conditions, you can generate a sample from f(y) and then generate a sample from
f(x|y). Thus the generated sample would be from the joint distribution of x and y

• Distorting or transforming samples from the available distribution - Basically you generate samples from the available
distribution and then apply censoring or some sort of logic to generate samples from the target distribution. Methods
such as Rejection sampling and Importance sampling fall under this category

• Markov chain Monte Carlo - This involves setting up a Markov chain which has a stationary distribution, the chain
converges to the stationary distribution and obviously the stationary distribution is the target distribution that
you are looking to sample from. MCMC techniques have revolutionized Bayesian analysis. More specifically the
availability of BUGS on a standard desktop has truly revolutionized Bayes.

4.1 Normal Approximations

A common ground appears between a Bayesian and a Frequentist when one invokes the multivariate normal approximation
to the posterior distribution of parameters. What are the positives for doing this approximation ?

• Typically one is interested in the marginal distribution of an element of the parameter vector. The fact that it is a
multivariate normal distribution means the marginal can be read off from the mean and covariance matrix

• Multivariate normal distribution has this appealing property that the posterior mode of the parameter vector has
elements that are posterior modes of the marginal distribution of individual components.

• By using normal approximations, a Bayesian can use frequentist software as the MLE estimates and Fischer infor-
mation matrix estimates can readily be used to sample from the posterior distribution

Well not all is rosy by assuming multivariate normal. If the dimension of the parameter space increases, the approximation
does not do well. So is the case when the dataset is small or contains only extreme observations. This leaves one with a
situation that normal approximation might not be better and the only way to check that is to actually sample from the
posterior distribution, the very reason why one avoids doing it and invokes normal approximation. So, there must be a
better way than normal approximation.

4.2 Exact Sampling in one step

I liked the section title as it gives a way to demarcate between methods like rejection sampling and MCMC methods. In
the former, with in one step, you are able to generate a sample from the target distribution whereas in MCMC method,
you need to run a chain to get the sample from the posterior distribution. This section talks about two methods where
the samples can be generated in a single step. They are rejection sampling and inverting the distribution method. I had
read about rejection sampling many times but some reasons I could not verbalize even though I knew the algo. Somehow
after reading this book, I think I just got the crux of the method.

Suppose the target distribution is f(y) and you are able to generate samples from another distribution g(y).
Let’s say the max ratio between the two densities is M . The algo involves generating a random sample from
g(y) and then accepting or rejecting the value with a certain probability. This probability depends on the
standardized value of the ratio of densities at the generated random value. That’s it. Nothing magical about.
The reason the algo needs an estimate of M because the probability to accept or reject a sample depends on
M .

The other method mentioned in this section is the inverting the distribution function which is probably the first method
one learns in any elementary probability course for generating random variables. One interesting thing I have learned
from this chapter is about log concavity. The section mentions that applied economist mostly work with log concave
functions for which the rejection method always works.
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4.3 Markov Chain Monte Carlo

This section gives a crash course in the theory of Markov chains. Like any good teacher, the author starts off with the
simple case of finite state chains and then to countable state chains and subsequently to continuous chains. The idea of
using Markov chain to generate samples from the posterior means that you whatever be your strategy for chain evolution,
it should first have a stationary distribution. Basically a stationary distribution is a chain where for some specific p, the
distribution at time t and t+ 1 are same as p, in which case p is termed as the stationary distribution. For finite Markov
chains, the condition of irreducibility is enough to be sure that there is a stationary distribution. For a countable Markov
chains, there is an additional condition of positive recurrence that makes the chain possess a stationary distribution.The
author gives a nice intuition behind irreducibility. While using MCMC your objective is to generate samples from a
distribution and in one sense you want the random sample to generate all the states in the state space, i.e. it should not
be the case that the chain cannot communicate with a few states and hence the random sample no longer belongs to the
target distribution.

The other aspect is about the convergence. It is possible that a Markov chain has a stationary distribution but the
specific starting distribution of yours might not converge to the stationary distribution. So, in one sense what is needed is
a comparison between time average and ensemble average. The notion of periodicity is introduced as a necessary condition
for convergence of a Markov chain. A brief note on the speed of convergence for finite state Markov chains is given where
it is said that speed of the convergence is geometrically fast and is dependent on the absolute value of the second eigen
value of the transition matrix.

4.4 Two General Methods for constructing Kernels

The section starts off with Gibbs Sampler, one of the first MCMC algorithm to be used in statistics and econometrics. It
remains a popular MCMC method in today’s world more so because of the software BUGS that is available for everyone
to use. The sampler involves the following steps

1. Sample y1 from the conditional distribution of Y1 given Y2 = x2, pY1|Y2
(y1|x2)

2. Using the realization y1, sample y2 from the conditional distribution of Y2 given Y1 = y1, pY2|Y1
(y2|y1)

3. Repeat the above two steps.

The Gibbs sampler Kernel takes the following form

K(x, y) = pY1|Y2
(y1|x2)pY2|Y1

(y2|y1)

From a technical point of view the conditions of irreducibility, aperiodicity and positive recurrence are tough to verify
every time you use a Gibbs sampling kernel. Hence the practitioner’s way to do is to run the Markov chain and then do
some diagnostics to check for the convergence of the chain. A related concept that is introduced is the data augmentation
procedure. This is mainly done to ease the Gibbs sampling procedure. By adding extra parameters, it become easy to
perform Gibbs sampling. An example of probit regression is used to drive home this point. The author also cautions the
reader that there can be a situation where the conditionals are proper distributions but the product of conditionals can
be an improper distribution.

Subsequently, the chapter introduces Metropolis method, a technique to generate a Markov chain that aims to sample from
a target distribution. The requirements to get going on the Markov chain is a proposal distributions over the parameter
space. These distributions are used to generate new parameter values. These proposal distributions are not transition
kernels as there is a probability associated with accepting the transition probability. In the Metropolis algorithm, the
proposal distributions are symmetric in parameters and hence drop out of the rejection criterion. A generalization of
Metropolis algorithm is Metropolis Hastings(M-H) algorithm that relaxes the requirement on proposal distributions and
hence one can conjure up whatever proposal distribution one might want. Even though M-H algorithm is flexible, Gibbs
is usually the preferred choice mainly because intuitively it makes more sense. Only if Gibbs fails does one usually explore
M-H algorithm.

4.5 Convergence

How does convergence work ? How can we be sure that the chain actually converges to the stationary distribution ? In a
strict sense, one can never answer that question. However there are some diagnostics that one can do to check whether
the chains are stationary. A common technique used is to compute some some statistic that is scalar function of the
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parameter vector and compare the variance of realization of this statistic between chains and within chains. The ratio
between the variances can be used to infer the convergence of the chains. The technical name for such a class of statistics
is called Gelman-Rubin statistic. This statistic is readily printed in the BUGS software and if it reaches 1, it indicates
convergence.( It doesn’t obviously prove convergence)

4.6 Rao Blackwell density estimates

I had come across Rao Blackwell theorem but really understood its practical application from this chapter. In essence the
theorem by Rao Blackwell says that var(Y ) ≥ var(E(Y/X)), i.e variance of a random variable is always greater than or
equal to variance of the conditional mean. The most common use of Rao-Blackwell theorem is to construct, from sampler
output, a good estimate of the marginal probability density function of some scalar component of the parameter vector
θ. The section also provides R code and an example to illustrate this point. Going through the example, the whole funda
of Rao Blackwell theorem became very clear to me. Rao Blackwell densities are also used to compute prior predictive
distributions and an example is given that shows how one should one go about it.

4.7 Implementing MCMC

Until recently if you had to do MCMC, you had to write down your own sampler. With BUGS, things have become really
easy. You specify the data, likelihood and the prior and BUGS picks the right MCMC technique to come up with the
posterior distribution of the parameters as well as several other diagnostics needed to check the convergence of the chain.
This relieves the researcher as he can concentrate on choosing the right likelihood and prior for the analysis and not worry
about Markov chain constructions. There are some aspects that you need to follow for BUGS to run properly such that
you cannot input improper priors etc. In the recent years, separate R packages have been developed to do diagnostics and
reporting on the BUGS output.

4.8 Summary

Bayesian inference requires you to compute probability distributions and this can be done by sampling from them. There
are many ways to sample probability distributions using a computer. This is the currently effective way - don’t deduce
probability distributions, sample them. They may be sampled by single calls to available subroutines they may be samples
as a sequence of dependent realizations, as in MCMC. All these methods are now well within the capacity of an applied
economics researcher. The chapter provides the basis for a good understanding of sampling methods and has focused on
the most significant one, markov chain monte carlo.
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5 Non-linear Regression Models

The first thing that should come to mind when one hears about non linear regression model is that the mean of the
random variable that is being modeled is a non linear function of parameters. In the probit case for example, the
E(Y |X) = Φ(Xβ). In the logit case, it is E(Y |X) = F (Xβ) where F is chosen as the logistic function.

5.1 Models considered

The chapter deals with the following model :

• Production functions

– These functions model the relationship between land, capital and production of a firm. The model is used to
explain the nature of a non-linear regression model. From a Bayesian perspective, the code is not that different
from the one used for linear regression.

• Probit Model

– The setting is where an agent has to make a choice based on his utility function. In this setting probit models
arise when you choose normality for the prior on the difference in utility error terms. One can also use a
hierarchical Bayes in the probit setting by assuming that each person’s error variable in the utility model has
his own precision. Other models for the choice of error terms give rise to different models such as logistic model
and linear probability model. It is important to have some economic scenario behind every model that you
consider. In that sense, this book is perfect as it gives describes an economic situation for every model that is
being discussed.

– In R, you build GLM models by specifying the link function. It is important to note that the link function does
not express the mean as a function of xβ but the other way round, it expresses xβ as a function of mean.

• Ordered Multinomial choice Model

• Multinomial choice Model

• Censored & Truncated Models

– An example of Censored linear models is this : Either the buyer doesn’t make a purchase or makes a purchase
worth y. This is the case where at an agent level the data recorded is a left truncated data

– A random variable is censored if we may only observe its value when it lies in a proper subset of its support
and otherwise observe only that it lies outside that subset.

– The standard censored data likelihood has the form

gc(y) = f(y)Iy∈SP (Y ∈ Sc)Iy∈Sc

where S is the set of possible Y values where we are permitted to observe the value of Y , Sc is its complement
and Iy∈S is the indicator of the event that Y falls in S.

– A Truncated random variable is one where we observe the values only if its value lies in a proper subset of its
support.

– Censored data is more informative than the Truncated data because with the former we get to know how many
of the observations fall outside the subset

– For truncated data, the likelihood is

gt(y) =
f(y)

P (Y ∈ S)

• Poisson Model

– Count data arises when during the period of observation, an event may occur many times. A natural model is
the poisson model and a standard way to introduce covariates in the model is to create a dependency between
mean and the covariates.

E(Yi|xiβ) = exiβ

• Heterogenous Poisson model
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– Additional agent level variation is introduced in the homogenous Poisson model by modeling the expectation
as

E(Yi|xiβ) = νie
xiβ

νi represents the collective effects of unmeasured covariates on the mean count.

– Since the model will now have νi, i ∈ {1, 2, . . . n} parameters, the usual way to do is to assume a common
choice for the prior νi and thus creating a hierarchical bayes

– The Poisson model augmented with gamma multiplicative heterogeneity in the mean is usually called the
negative binomial model since if we integrate ν out of the Poisson likelihood with respect to a gamma(α, α),
we find the resulting mass function is that of a negative binomial distribution

• Duration Models

– Economists often find themselves about the length of time that some event lasts. Data that represent an
interval of time are called duration data and in a regression model we are interested in understanding how
covariates affect the distribution of the duration. The most natural way to think of covariate effects is to
imagine an agent at a sequence of time points at each of which he must choose to terminate the event or not.

– The probability of stopping can be written as

θ(t) =
g(t)

1−G(t)

where g(t) is the density function of the duration at t and G = 1−G(t) is called survivor function.

– By specifying a sequence of binary choice probabilities for each instant of time we have deduced the entire
distribution of the duration.

– This means specifying the value of θ(t), you get the other forms of g(t) and G(t) and from which the entire
distribution flows.

θ(t, x) = θ0(t)ψ(x)

– Exponential duration model is where θ is constant in which case you can connect the model with the covariates
as

E(Y |x, β) = exp(−xβ)

– Weibull duration model is one where the functional form for θ is

θ(t, x) = αtα−1ψ(x)

– Piecewise constant hazards : This is one where the time axis is partitioned and hazards are modeled for separate
time pieces.

– Heterogenous duration models : These can be modeled via νi parameter for each agent. Thus for a exponential
duration model you can assume the hazard as νie

xβ and for a weibull duration, you can assume the hazard as
νiαt

α−1exβexp−νiexβtα

The way one incorporates heterogeneity in count data model is by multiplying the expectation of the observed data with
a gamma variate. One might think that a similar kind of treatment can be made to other models such as logit or probit
models by adding an additional log term. However there is a problem here. The problem is that of indentification. Thus
one way to incorporate agent level heterogeneity in to the model is to make the coefficients of covariates agent specific.
The way to model this is to build a hierarchical model for the coefficients of the covariates. These models are called
random effects model in the literature.

5.2 Summary

The BUGS code that needs to be written for the non linear regression models is not far too different from those of linear
regression models. However there are subtle points that one need to keep in mind. The way one incorporates heterogeneity
in to the model is different for each type of non linear model. Also there is some useful learning about the way to go
about building a model for truncated or a censored data. It took me a while to understant the various tricks that one
can use to make BUGS simulate posterior distributions for truncated and censored data. Also, the gam package can add
far more flexibility to the modeling than the usual standard models.
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6 Randomized, Controlled and Observational Data

This chapter should be an essential reading for anyone who builds econometric models but who doesn’t think about the
exogenity of the covariates. The standard way of building an econometric model begins with hypothesizing a relationship
between the criteria variable y and covariates x in the form of a function g(y, x) = 0. This is a deterministic function at
the theory level. If this relationship has to meet the real data, then econometrician allows for an additional parameter
ε that captures all the unmeasured effects of the relationship. Hence g(y, x, ε) is what he starts with and estimates the
parameters. In a Bayesian setting, there needs to be additional assumptions such as mean independence and covariate
independence to obtain the posterior distribution of the parameters. Are these assumptions justified?

In a controlled experiment done in a laboratory, there is a chance that the experimenter creates the conditions so
that only the covariate changes keeping all else constant. In that sense he tried to capture a near deterministic relation if
at all it exists. Such controlled experiments are near impossible in economic data. In a randomized experiment, the
experimenter chooses the covariate value based on some random number generator’s output. The thought process behind
this is that differences in the outcomes can plausibly be attributed, on average, to the difference in treatments. This kind
of randomized trials are usually seen in agricultural settings, clinical trial settings etc. Economic data is observational
data. There is no random number generator sitting behind the data and choosing covariates. Hence one must know that
covariates can be of two types, one is exogenous and second is endogenous. In the former case, one can use random
number generator argument to defend the exogenity. Endogenous variables are those where the mean dependence or error
independence is weak or incorrect. The chapter gives several examples where the covariates are endogenous. In all such
cases, the argument is that the covariateε and x are dependent and hence plain regression framework has no meaning.
There are ways to deal with endogenous variables, i.e. panel data procedure and instrument variables. Both are dealt in
this book by given a chapter length treatment to each.
The chapter concludes with an example of Simpson’s Paradox, a very simple 2 by 2 data matrix that shows the mistake
of treating an endogenous variable as an exogenous variable and blindly using the regression framework. The paradox is
resolves only when one sees that the covariates are endogenous and the error term cannot be assumed independent of the
covariates.

7 Instrument Variables

This is an important idea that is used by several econometricians to cope with the “endogenous variable” problem that
occurs in dealing with covariates. Here is a list of terms introduced in this chapter

• Recursive equation

• Fully recursive system

• Endogenous variable

• Valid Instrument

• Strong Instrument

• Weak Instrument

• Structural form

• Reduced form

• degree of over identification

• just identified system

• over identified system

The chapter presents a clear explanation of the purpose of instrument variable, i.e. it behaves as if it were a randomizer.
The randomizer is chosen in such a way that it is correlated with one of the endogenous variables and is uncorrelated with
the errors in the model. Getting a valid instrument variable in an econometric analysis can make the whole analysis more
believable. However not all is rosy in the world where you are not handed instruments on a platter. You need to search for
these instruments. There are situations where the instruments could be weak, i.e. they are not highly correlated with the
covariate. In such cases the inference falls apart. The chapter has some fantastic visuals which show the repercussions of
choosing a weak instrument variable. I think I will always refer back to this chapter whenever I need to refresh concepts
about Instrument variables. Definitely one of the clearest explanations of IV that I have read till date.
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8 Time Series Models

The chapter tackles the issue of exogenity of the covariates in an AR(1) model and explains that the covariates in a
time series regression are not exogenous variables but also are not exactly like endogenous variables. Instead a new term
is introduced in the section called predetermined variable. This term is meant to capture the fact that each covariate
is correlated to all the error terms of the previous time steps. Given this context, the chapter introduces two types of
likelihood functions, first is the conditional likelihood where the likelihood is conditioned on the starting data point and
second is the full likelihood where the distribution for the starting data point is assumed. One can make a dogmatic
assertion that the process is a stationary process and use the stationary distribution of AR(1) as a distribution for the
starting data point. So, that’s about the likelihood function. For the prior, there are many choices and this is where a
lot of Bayesian research is going on. Even for as simple process as an AR(1) process, there are many choices of priors
but no clear guidance exists on the type of prior to be chosen for a particular situation. There are priors based on your
assumption that the series is a random walk. There are priors assuming that the process is stationary. Jeffrey’s prior in
this case is dependent on the sample size and hence is not an appealing Bayesian prior.

The other aspect that is highlighted in this chapter is the type of parameterization that one can use. There are two types
of parameterizations that are illustrated for an AR(1) process. One is the mean parameterization and other is the usual
regression coefficient parameterization. It is shown that the posterior distribution of the ρ in AR(1) depends on the type
of parameterization and this is not so pleasant thing about working with Bayesian setting. The chapter subsequently
explains the way to do prediction for AR(1) process. A few lines of BUGS code can do the job. The good thing about
using Bayes is that the same framework can be used for a variety of tasks. Obviously the downside is that the choosing the
right prior is not so easy. The chapter ends with a discussion of Stochastic volatility model and the way one can use BUGS
to estimate the parameters of the model. Even if one does not have a clue about Brownian motion, stochastic calculus,
stochastic processes etc., Bayesian analysis can be used to develop sophisticated models. In one sense it is liberating
but in another sense it is frightening. Bayes and MCMC gives the analyst the technology to model significantly complex
relationships. However the onus is on the analyst to pick his priors and likelihood in such a way that they are convincing
to the audience he/she is presenting the model.

9 One’s Trick

Suppose that the density function that you wish to use in the model has the form f(y, t) where y is the variable whose
distribution is described and t are the parameters of that distribution. We assume that you can write down f as analytical
expression. Note that the mass function of a Bernoulli variate with parameter p is pz(1 − p)1−z and that at z = 1, this
expression is p. Thus if we write z~dbern(p) with p = f(y, t) and input z data that are all equal to 1 we shall have
written down code expressing the belief that y given t has the density function equal to f(y, t)

10 Takeaway

After working through the book I think that this book needs to be read with some understanding of BUGS and R/S

language. In that way, you can simulate and check for yourself the various results and graphs that the author uses to
illustrate various points. The book does not assume anything and starts by explaining the essence of any econometric
model and the way in which an econometrician has to put in assumptions to obtain posterior distribution. The core of
the book is covered in three chapters, first two covering model estimation and model checking, and the fourth chapter
of the book covering MCMC techniques. The rest of the chapters cover linear models, non linear models and time series
models. There are two chapters, one on Panel data and one on Instrument variables that become essential for practicing
econometrician for tackling endogenous variables. BUGS code for all the models explained in the book are given in the
appendix. So, overall a self contained book and a perfect book to start on Bayesian econometric analysis journey.
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