
Dynamic Documents with R and knitr

Summary

RK

December 5, 2013

Abstract

The purpose of this document is to summarize the main points from the book “Dynamic Documents

with R and knitr”.

1

Dynamic Documents with R and knitr

Background

When you use Sweave for the first time, you really appreciate its utility. It’s like you are given the tools

to think, code, reflect, tweak the code, write down your observations about the code and output, all in one

document. No distractions, No switching softwares. I had thoroughly enjoyed doing literate programming

in the last few years. However you reach a point when you think Sweave package should have had some

convenient features. I was always not happy with the code chunk for including graphics. If I use ggplot2

package, I had to write print so as to include the figure in the report. However if it was a base graphics, I

could just include it with out any such additional statement. Also to have control on the size of figure, I had

to fall back on LATEX. Shouldn’t there be an option in the code chunk that combines these two and make it

easier for the user ? That’s when I stumbled on to knitr and I am thrilled after using it. In this document, I

will try to summarize the main points from the book on knitr, written by the package author, Yihui Xie

Preface

There are dangers in doing analysis at a separate place and then tabulating all the results in to a report

manually.

� it is error-prone due to too much manual work.

� it requires lots of human effort to do tedious jobs such as copying results across documents.

� the workflow is barely recordable especially when it involves GUI (Graphical User Interface) operations,

therefore it is dif- ficult to reproduce.

� a tiny change of the data source in the future will require the author(s) to go through the same procedure

again, which can take nearly the same amount of time and effort.

� the analysis and writing are separate, so close attention has to be paid to the synchronization of the two

parts.

In this book, dynamic documents refer to the kind of source documents containing both program code and

narratives. Sometimes we may just call them source documents since “dynamic” may sound confusing and

ambiguous to some people(no interactivity or animations). The book follows the convention :

� package - bold text for package.

� plot() - italics for function names.

� apply(y,1,sum) - typewrite font for inline text.

� figure/foo.pdf - sansseriff font for figures.

I will keep in mind these conventions when I do create my own RR(Reproducible Research) documents.

Introduction

The basic idea behind dynamic documents stems from literate programming, a programming paradigm con-

ceived by Donald Knuth (Knuth, 1984). The original idea was mainly for writing software: mix the source code

and documentation together; we can either extract the source code out (called tangle) or execute the code to get

the compiled results (called weave). A dynamic document is not entirely different from a computer program:

for a dynamic document, we need to run software packages to compile our ideas (often implemented as source

code) into numeric or graphical output, and insert the output into our literal writings (like documentation).

2

Dynamic Documents with R and knitr

Literate programming paradigm has two tasks:

1. write program code to do computing, and

2. write narratives to explain what is being done by the program code.

The traditional approach to doing the second task is to write comments for the code, but comments are often

limited in terms of expressing the full thoughts of the authors. Normally we write our ideas in a paper or a

report instead of hundreds of lines of code comments. Technically, literate programming involves three steps:

1. parse the source document and separate code from narratives.

2. execute source code and return results.

3. mix results from the source code with the original narratives.

These steps can be implemented in software packages, so the authors do not need to take care of these technical

details. Instead, we only control what the output should look like.

Reproducible Research

Dynamic report generation is a step towards RR, as the latter encompasses many more activities. If you

had taken a particular seed for simulation, you can generate a dynamic report and be done with it. However

may be the seed turned to be a lucky seed and the inferences are actually incorrect. These type of aspects

cannot be ensured by merely creating a dynamic report. Hence one must carefully understand the limitations

of Dynamic reports, i.e. what can be done via RR ? and what RR doesn’t do ?

A few good practices for RR:

� Manage all source files under the same directory and use relative paths whenever possible - This was

something that I was not doing at all.

� Do not change the working directory after the computing has started. I always do this and I realize now

that it is a bad practice.

� Compile the documents in a clean R session.

� Avoid the commands that require human interaction. My analysis has never required human interaction.

� Avoid environment variables for data analysis. I have taken care of this, I think. But at least now I am

consciously aware of it.

� Attach sessionInfo() and instructions on how to compile the document - I have never done this till date.

I just got to know about (Rpubs). I hope to use in the days to come.

A First Look

The knitr package is a general-purpose literate programming engine - it supports document formats including

LATEX, HTML, Markdown, and programming languages such as R, Python, awk, C++, and shell scripts.

Two basic examples are shown in this chapter, one that converts a .Rnw in to .pdf and the second a .Rmd in

to .html. Just to understand how publishing works, I have posted it on (Rpubs).If you have a R code, you

can quickly convert in to a report using the stitch() command. Also given a .Rnw, you can extract the code

using purl() command.

3

http://rpubs.com/
http://rpubs.com/safeisrisky/minimal

Dynamic Documents with R and knitr

Editors

This chapter gives information about various editors that can be configured so that working with knitr becomes

a pleasant experience. It mentions RStudio, LyX,ESS, Tinn-R,Texmaker, Eclipse, TextMate,TEXShop, and

Vim. I am happy to know that I can configure StatET to work with knitr. Will get it installed on StatET

sometime soon.

Document Formats

The three components of knitr are

� a source parser.

� a code evaluator.

� an output renderer.

The parser parses the source document and identifies computer code chunks as well as inline code from the

document; the evaluator executes the code and returns results; the renderer formats the results from computing

in an appropriate format, which will finally be combined with the original documentation.

The pattern for beginning of a chunk in Rnw is a regular expression

all_patternsrnwchunk.begin

[1] "^\\s*<<(.*)>>=.*$"

The chunk options can be any piece of R code that is compatible with the kind of value that option expects.

You can write a code that results in TRUE/FALSE and then assign to it option eval. This is very flexible as

compared to Sweave where you can’t use code to set option values.

Chunk labels are supposed to be unique id’s in a document, and they are mainly used to generate external

files such as images and cache files. If two non-empty chunks have the same label, knitr will stop and emit

an error message, because there is potential danger that the files generated from one chunk may override

the other chunk. If we leave a chunk label empty, knitr will automatically generate a label of the form

unnamed-chunk-i, where i is an incremental chunk number. One can also set chunk options globally, for

example,opts_chunk$set (echo = FALSE), does not echo code for any chunk. You can override this setting

for individual chunk though. <<>>= denotes opening of a code chunk and @ denotes close of a code chunk and

opening of documentation chunk.

In a Sweave document, the start and end of code syntax is <<*>>= and and @. Inline code syntax is \Sexpr{}.

In a mardown document, the start and end of code syntax is ```{r *} and and ```. Inline code syntax is

`r x`. The chapter talks about markdown language and praises its simplicity that anyone who has ever written

an email can create a markdown document. It also goes on to list a host of derivative markdown packages that

have appeared. RStudio used markdown package for its implementation. It also mentions Pandoc, that is

usually called the swiss knife of document conversion as it supports the conversion of markdown in to a host

of formats. knitr will parse the code, be it a a chunk or inline fragment and then renders it to the appropriate

output using various output hooks.

4

Dynamic Documents with R and knitr

grep("^render_", ls("package:knitr"), value = TRUE)

[1] "render_asciidoc" "render_html" "render_jekyll" "render_latex"

[5] "render_listings" "render_markdown" "render_rst" "render_sweave"

render_sweave() uses the default Sweave output whereas render_listings() decorates the output.

So, based on type of output you want, you can configure the setting. This chapter explains the set of functions

for various hooks such as plot, chunk, inline, document so that the hooks produce appropriate content for the

chosen output format. There is also a spin() function that takes plain simple R code that has been commented

using roxygen and converts in to LATEXor markdown document.

Text Output

knitr default rounding is 4 digits and numbers > 10−5 will be shown in scientific notation. Here are some of

the main points mentioned in the context of text output.

� eval - A boolean that controls whether the code should be shown asis or evaluated.

� tidy - Specify whether the code should be tidied up or not?

tidy = FALSE

for(k in 1:10){j= cos (sin(k)*k^2)+3}

for (k in 1:10) {

j = cos(sin(k) * k^2) + 3

}

� tidy.opts - width.cutoff to specify the max width.

� options in tidy

names(formals(formatR::tidy.source))

[1] "source" "keep.comment" "keep.blank.line"

[4] "replace.assign" "left.brace.newline" "reindent.spaces"

[7] "output" "text" "width.cutoff"

[10] "..."

� code decoration

highlight = FALSE

x <- rnorm(5)

var(x)

[1] 2.139

x <- rnorm(5)

var(x)

[1] 0.8289

� A very painful problem is solved, i.e. copy pasting the code from RR documents Before knitr , I used

to see code like this

5

Dynamic Documents with R and knitr

> x <- rnorm(5)

> var(x)

[1] 0.9248

but with knitr the default is this

x <- rnorm(5)

var(x)

[1] 0.2604

The output is put in as comments which makes it easy to copy paste the code. Superb feature.
� font sizes - footnotesize, small, large, and Large, The default is normal size.

footnotesize

x <- rnorm(5)

small

x <- rnorm(5)

normal

x <- rnorm(5)

large

x <- rnorm(5)

Large

x <- rnorm(5)

� echo - Should the code chunk be shown. Note that this has nothing to do with the evaluation of the

code chunk

� results - asis value for this option is very useful. When you need to produce tables using R, you can

use asis option so that raw output is dumped on to the document.

� warnings/error/message - All these can be set as a boolean value based on whether you want to see

them in the report. They can also be set at a global level.

<<>>=

opts_chunk$set (warning = FALSE, message = FALSE)

@

� To stop on error, use opts_knit$set (stop_on_error = 2L). I gather from the author’s blog that

this option is deprecated. Wow! already things in the book are deprecated. I wonder how long will

the functionality of the other options get deprecated. I hope not, for there is no point in wasting time

learning and building muscle memory for things that go in to oblivion quickly. Anyway, now the preferred

way to stop knitr is to use error=FALSE

� For tables, you can use xtable package and set results="asis"

� There are about 80 themes shipped via knitr

head(knit_theme$get(), 20)

[1] "acid" "aiseered" "andes" "anotherdark" "autumn"

[6] "baycomb" "bclear" "biogoo" "bipolar" "blacknblue"

[11] "bluegreen" "breeze" "bright" "camo" "candy"

6

Dynamic Documents with R and knitr

[16] "clarity" "dante" "darkblue" "darkbone" "darkness"

These themes work for LATEXand HTML output. The link on the web, themes, contains a preview of all

themes.

Graphics

Yippee!,finally reached the section for which I was looking forward to read. Firstly no need of print(p) to include

a ggplot(2) visual. The default device for Rnw documents is PDF and for Rmd/Rhtml/Rrst documents, it

is PNG because normally PDF does not work in HTML output. Some of the options for graphics output are

� fig.width,fig.height

library(ggplot2)

p <- qplot(carat, price, data = diamonds) + geom_hex()

p

� dev.args

plot(rep(0:1, 10), pch = 1:20, col = 2, xlab = "xlab font", ylab = "ylab font")

mtext("Bookman in the PDF device", side = 3, cex = 1.2)

text(6, 0.5, "Aa Bb Cc\nRr Ss Tt\nXx Yy Zz", cex = 1.5)

text(16, 0.5, "g", cex = 6, col = 3)

5 10 15 20

0
.0

0
.4

0
.8

xlab font

yl
a
b
 f

on
t

Bookman in the PDF device

Aa Bb Cc
Rr Ss Tt
Xx Yy Zz

g

� encoding

pdf.options(encoding = "CP1250")

� dingbats - To reduce the size of scatter plots

7

http://animation.r-forge.r-project.org/knitr/

Dynamic Documents with R and knitr

� The great thing about knitr is that if the chunk has three plots, the plots are shown in the report with

out any additional effort. This is unlike Sweave where only the recent plot is maintained.

two plots side by side (option fig.show='hold')

plot(cars)

boxplot(cars$dist, xlab = "dist")

5 10 15 20 25

0
20

40
60

80
10

0
12

0

speed

di
st

0
20

40
60

80
10

0
12

0
dist

� One thing I am really impressed with graphics options is that I can do away with the LATEXcode that

I had to always put in after a Sweave code chunk. With the range of options available, I can forget

about that task.

� The fact that all the figures automatically go to a specific directory is so much nicer as it will not clutter

the workspace of Rnw files.

� code chunk name should be unique. I was following a crazy naming convention of using fig1, fig2 etc.

in my Sweave code. Now I can just forget about all that and let knitr take care of all those things.

Having said that, may be it makes sense to follow some naming convention for all the figures. I think I

will specify fig.ext so that I know that a identify the figures for various chapters.

� fig.env,fig.pos,fig.scap,fig.lp - All these are built in as chunk options. So, there is no need to

add LATEXcode.

� out.width - This controls the The fig.width and fig.height options specify the size of plots in the

graphical device, and the real size in the output document can be different and can be specified by

out.width

Cache

This is another section of the book that I was eagerly awaiting to get to. Most of the times my Sweave

documents take a long time to run, mainly because some of my code chunks take a long time to run. I knew

there was a way around in Sweave to use caching but somehow never found time to learn about it. The other

day I was working on a document and realized that there was no option but to cache various chunks. I used

a funny work around, in fact an ugly work around of placing all code chunks in separate child Sweave files.

Needless to say, organizing the whole thing was a nightmare. knitr promised a convenient way and indeed it

is so easy to incorporate caching.

8

Dynamic Documents with R and knitr

The basic ideas of caching is that a chunk will not be re-executed as long as it has not been modified since

the last run, and old results will be directly loaded instead.

� cache.path - The directory where all the cache files will be stored

� There are some techniques mentioned in the book when a cache needs to be updated in the case of

version change in R or an external file change.

� The chapter explains the limitations of packages like weaver and cacheSweave, i.e. they do not save

side effects. However knitr caches side effects like graphics output, loaded packages, random seed.

� By default the option to cache is set to false in every code chunk. To set this option globally one can

use a code chunk with

<<>>=

opts_chunk$set(cache.path="cache/graphics-)"

@

� code chunk dependency is another thing that one needs to be careful about.

x <- 1

y <- x + 2

y + 5

[1] 8

The dependency is necessary because chunkC uses the object y that was created in chunkB, and chunkB

needs the value of x created in chunkA. When x in the first chunk is changed, the latter two chunks have

to be updated accordingly.

� Instead of explicitly specifying the dependency, there is also an experimental feature, i.e. setting

autodep = TRUE.

Overall I am so happy after reading this chapter on caching. Now I can use all these features and save a ton

of my time in running RR reports.

Cross Reference

This chapter begins with the idea of chunk reuse. One can reuse whole chunks by following ref option The

section on organizing child documents was very useful to me. The inclusion of child Rnw documents can be

done by

<<D, child="chapt1.Rnw">=

@

Learnt a way to apply preamble to the child documents

<<parent, include=FALSE>=

set_parent ("master.Rnw")

@

All these aspects were very messy via Sweave. Indeed knitr makes things in RR very appealing.

9

Dynamic Documents with R and knitr

Hooks

A hook is a userdefined R function to fulfill tasks beyond the default capability of knitr. This chapter deals

with chunk hooks. A chunk hook is a function stored in knit_hooks and triggered by a custom chunk option.

� Create chunk hooks A chunk hook can be arbitrarily named, as long as it does not clash with existing

hooks. It can then be triggered by the label name

<<>=

knit_hooks$set(margin = function(before, options, envir){

if(before)

par(mar=c(4,4,0.1,0.1)) else NULL

})

@

<<margin=TRUE>>=

par(bg="gray")

plot(1:10)

@

� Three arguments to the chunk - before(whether it is called before the chunk or after the chunk),options(list

of chunk options), envir(environment in which the chunk exists)

� Hooks and chunk options - One can define the chunk hook to non NULL globally

opts_chunk$set(margin = TRUE)

� One can add arguments to chunk hook

knit_hooks$set(margin = function(before, options, envir) {

if (before) {

m <- options$margin

if (is.numeric(m) && length(m) == 4L) {

par(mar = m)

}

} else NULL

})

� one can also write output from a chunk hook.

Out of the all examples mentioned in this chapter, I think the most useful one for my work is cropping of a

figure via chunk hook.

Language Engines

This chapter talks about using knitr with other languages such as Python, Ruby, Haskell, awk/gawk, sed,

shell scripts, Perl, SAS, TikZ, Graphviz and C + +, etc. Not relevant for my future work and hence skipped

the contents.

10

Dynamic Documents with R and knitr

Tricks and Solutions

The author says in his blog :

I do not have much to say about this book: almost everything in the book can be found in the

online documentation, questions & answers and the source code. The point of buying this book is

perhaps you do not have time to read through all the two thousand questions and answers online,

and I did that for you.

This chapter is mainly a collection of important tricks that you can use for RR. Here are the some of tricks I

will definitely use in my RR activity(the actual list in the book is long and the usage depends on purpose of

RR one is creating):

� using option aliasing :

set_alias(w = "fig.width", h = "fig.height")

� using opt_template : This is definitely a pain area for me that the package addresses. There are multiple

times when you want to have different sizes for graphics and now you can do it conveniently as follows

opts_template$set(fig.large = list(fig.width = 7, fig.height = 5),

fig.small = list(fig.width = 3.5, fig.height = 3), fig.rk = list(fig.width = 4,

fig.height = 4))

<<opts.label= "fig.rk">>

plot(1:10)

@

� Pushing all the code to the appendix. This is useful for some type RR documents where you want to

put all the code in the appendix. neat hack!

� For the width of source code and text output, it is controlled by the global option width in options().

Alternatively use \lstset{breaklines=true}.

� Message colors

\definecolor{messagecolor}{rgb}{0, 0, 0}

\definecolor{warningcolor}{rgb}{1, 0, 1}

\definecolor{errorcolor}{rgb}{1, 0, 0}

� Beamer : Beamer is a popular document class to create slides with LATEX. Using knitr in beamer slides

is not very different from other LATEXdocuments; the only thing to keep in mind is that we need to

specify the fragile option on beamer frames when we have verbatim output.

� suppress long output.

� publishing external images with the HTML file.

� extract source code.

� Dealing with reproducible simulation where there is a cache setting for a chunk.

� Turning package documentation in to html files.

Publishing Reports

When your RR is ready for publication, it is always better to set message and warning to FALSE. Using

RStudio to produce pdf of html is via a simple click of a button. One can also use Pandoc to convert a

markdown document to LATEX, HTML, rtf, epub, word doc, open document text etc. Basically pandoc is

11

Dynamic Documents with R and knitr

called swiss knife of document conversion and hence its always better to spend some time learning the basic

aspects of it. The easiest way to create a HTML5 presentation is to create a markdown via RStudio and then

run pandoc. This will be useful for those who want to embed code and text in to the presentation. These days

it has become quite common for people to blog R code and the chapter presents two ways to do it. One is via

Jekyll and other via the usual wordpress route. The infra needed to push documents to either of these places

is provided in knitr. The thing with wordpress is that modification is a pain once you have published. With

Jekyl it is said that it is far easier to maintain. But tell me who has time to edit a blog post? Publishing

itself takes time and I would rather do it on wordpress and be done with it. Well, may be if you want users to

check in and correct your code, probably Jekyl is a good way to go. I have never hosted code on Jekyl. Will

try it sometime soon.

Applications

This chapter mentions four applications. First is Doing Homeworks. Indeed with minimal configuration,

one can turn in high quality document will all the code and narrative at one place. The second application

mentioned is websites and blogs built on knitr. Third application is very interesting, creating vignettes. As

things stand, these are created using Sweave and there are no HTML vignettes on CRAN. Hopefully as things

move, CRAN will allow HTML vignettes that are so much more convenient for bookmarking, sharing etc. The

fourth application mentioned is writing books. I think this is similar to what is happening in the IPython world

where people are writing books in an ipython document and sharing it via sites like nbviewer. The chapter

mentions a few sites where knitr has been used

� Statistical Sleuth

� The Analysis of Data - HTML and pdf versions

Other Tools

This chapter talks about other tools such as Sweave, Dexy, IPython, Orgmode. Since I have been using

Sweave for some time, I found this chapter extremely useful as it lists down almost all the differences between

Sweave and knitr. This kind of information all at one place is so useful. I mean I might have had to go

through a ton of posts on stackoverflow or other places to get this info. Let me list down some of the main

differences here.

� concordance changed

� keep.source now becomes tidy

� print is redundant

� strip.white is dropped

� prefix is dropped

� prefix.string now becomes fig.path and has many more options

� eps,pdf options are dropped and new device option introduced for 20 graphical devices

� fig now becomes a set of options to control a ton of aspects of graphics. I love this part.

� width, height now become fig.width and fig.height

� SweaveOpts and SweaveInput deprecated.Instead one needs opts_chunk$set() and child

12

http://www3.amherst.edu/~nhorton/sleuth/
http://www.theanalysisofdata.com/

Dynamic Documents with R and knitr

What are some of the problems that knitr solves ?

� empty figure chunks give errors in Sweave. no longer in knitr

� no need to use the painful print command for image display.

� you can customize individual width of each figure in the output. In Sweave there is no straightforward

way.

� multiple figures from one figure chunk do not work by default in Sweave.

� it is easy to produce HTML output.

Takeaway

Imagine that you were using a clunky and a painful email service and suddenly one day you are shown gmail.

ArenÂŠt you thrilled ?. It’s elegant, quick and has a ton intuitive features. I had the same feeling with knitr

after having painfully used Sweave for a long time. I am certain that this package will stand out as the goto

package for literate programming for a very long time to come because it is elegant, quick and has features

that you were always trying to patch in via other packages. Should you read this book? Well, if you have the

patience and time to go over the manual and a thousand posts from stackoverflow and other places to know

the various features of the package, you don’t need this book. However if you are like me who is short of time,

values content that is organized and prefers to know the key hacks from the package, this book is definitely

worth it.

13

