
Laplace Transforms and Fourier Transforms

Laplace Transforms

• Laplace Transformation

f(s) =

∫ ∞
0

F (t) e−stdt

• Given a function, its Laplace Transformation is unique

• The restrictions on the function to have a Laplace transforma-
tion are | F (x) |≤ Meαx, function should be non singular, have
at most a finite number of finite jumps.

• Linearity Property

L{aF1(t) + bF2(t)} = aL{F1(t)}+ b{F2(t)}

• First Shift Theorem

L{e−btF (t)} = f(s+ b)

• Laplace Transformations for a few functions
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L{F (n)(t)} = snf(s)− sn−1F (0)− sn−2F ′(0)− . . .− F (n−1)(0)

• Heaviside’s Unit Step Function

L{H(t− t0)} =
e−st0

s

• Second Shift Theorem : If F (t) is a function of exponential order
in t , then

L{H(t− t0)F (t− t0)} = e−st0f(s)

• Inverse Laplace Transform : If F (t) has the Laplace transform
f(s), i.e

L{F (t)} = f(s)

then the Inverse Laplace Transform is defined by

L−1{f(s)} = F (t)

• Laplace transforms are unique apart from null functions. Inverse
Laplace functions are also unique apart from null functions.

• Initial Value Theorem

lim
t→0

F (t) = lim
s→∞

sf(s)

• Final Value Theorem

lim
t→∞

F (t) = lim
s→0

sf(s)

• Dirac -δ function

δ(t) = 0 ∀t, t 6= 0∫ ∞
∞

h(t) δ(t) dt = h(0)

for any function h(t) continous in (∞,−∞)

• Laplace Transform of δ function

L{δ(t)} = 1

• Filtering Property

L{h(t)δ(t− t0)} = h(t0)

• Application of Filtering Property

L{e−stf(t)δ(t− a)} = e−saf(a)

• Relationship between δ(t) and Heaviside function∫ ∞
t

δ(u− u0) du = H(t− u0)

Informally this means that the impulse function is the derivative
of the Heaviside Unit Step Function.
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• Laplace transform of Dirac -δ function and its derivatives∫ ∞
∞

h(t) δ(t) dt = h(0)∫ ∞
∞

h(t) δ′(t) dt = −h′(0)∫ ∞
∞

h(t) δ′′(t) dt = h′′(0)∫ ∞
∞

h(t) δ(n)(t) dt = (−1)nh(n)(0)

• Laplace transformation for a periodic function

L{F (t)} =

∫ T
0
e−stF (t)dt

1− e−sT

where F (t+ T ) = F (t),i.e., a function of period T

• The convolution of two given functions f(t) and g(t) is written
as f ∗ g and is defined by the integral

f ∗ g =

∫ t

0

f(τ)g(t− τ)dτ

• If f(t) and g(t) are two functions of exponential order and writ-
ing L{f} = f(s) and L{g} = g(s) as the two Laplace transforms,
then

L−1{f g} = f ∗ g

• Whenever you want to find a convolution between two func-
tions, find the Laplace transformation in to frequency domain,
multiply the transformations and then take the inverse Laplace
transformation to get the convolution in the time domain.

•
L{ 1√

t
} =

√
π

s

• The Error function erf(x) is defined by

erf(x) =
2√
π

∫ x

0

e−t
2

dt

• The complementary error function erfc(x) is defined by

erfc(x) =
2√
π

∫ ∞
x

e−t
2

dt

• Results useful in diffusion context
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√
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• Solving ODE’s using Laplace. Typically a first order or a sec-
ond order differential equation can be solved using the following
Laplace transformations

L{f ′(t)} = sf(s)− f(0)

L{f ′′(t)} = s2f(s)− sf(0)− f ′(0)

For solving an ODE, take a Laplace transformation of the ODE,
the equation becomes a simple equation in f(s). Once you solve
for f(s), you can apply inverse transform to get the particular and
complementary solutions to the ODE.

• Solving the ubiquitous second order differential equation,

a
∂2x

∂t2
+ b

∂x

∂t
+ cx = f(t)

The standard procedure is to take Laplace transform and convert
in to an equation involving f(s) and then either use convolution
formula or straight forward Laplace inversion to solve for x.

Fourier Transforms

• Bessel’s Inequality : If {e1, e2, . . . , en, . . .} is an orthonormal
basis for the linear space V, then for each a ∈ V , the series

∞∑
r=1

| 〈a, en〉 |2

converges. In addition, the inequality

∞∑
r=1

| 〈a, en〉 |2≤ ‖a‖2

• Fourier Series Representation of f(x) that has a period 2π

f(x) ∼ 1

2
a0 +

∞∑
n=1

(an cos(nx) + bn sin(nx)) − π < x < π

where

an =
1

π

∫ π

−π
f(x) cos(nx)dx

and

bn =
1

π

∫ π

−π
f(x) sin(nx)dx

• Fourier Series Representation of f(x) that has a period 2l

f(x) ∼ 1

2
a0 +

∞∑
n=1

(an cos(nπx/l) + bn sin(nπx/l)) − l < x < l

where

an =
1

l

∫ l

−l
f(x) cos(nπx/l)dx
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and

bn =
1

l

∫ l

−l
f(x) sin(nπx/l)dx

• Odd functions are represented by sines and even functions are
represented by cosines

• Complex Fourier series representation

f(x) ∼
∞∑

n=−∞
cne

inx

where

cn =
1

2
(an − ibn), c−n =

1

2
(an + ibn), c0 =

1

2
a0

cn =
1

2π

∫ π

π

f(x)e−inx and c−n =
1

2π

∫ π

π

f(x)einx

• Properties of Fourier Series
If f(x) is represented by the following Fourier Series

f ′(x) ∼ 1

2
a0 +

∞∑
n=1

(an cos(nx) + bn sin(nx)) − π < x < π

then

f ′(x) ∼
∞∑
n=1

(−nan cos(nx) + nbn sin(nx)) − π < x < π

and

∫ x

−π
f(t)dt =

1

2
a0(x+ π)+

∞∑
n=1

(
an
n

sin(nx)− bn
n

(cos(nx)− cos(nπ)))

− π < x < π

and the function on the right converges uniformly to the function
on the left.

• A fourier series expansion of f(x) can be point wise convergent
or uniformly convergent. If it is uniformly convergent, then you
can differentiate term by term. If it is pointwise convergent, then
differentiating both sides of the equation gives nonsense results

• If f(t) and g(t) are continous (−π, π) and provided∫ π

π

| f(t) |2 dt <∞and
∫ π

π

| g(t) |2 dt <∞

if an and bn are the Fourier coefficients of f(t) and αn, βn those
of g(t), then∫ π

−π
f(t)g(t)dt =

1

2
πa0b0 + π

∞∑
n=1

(αnan + βnbn)

• Parseval Identity :If f(t) is continous in the range(−π, π), is
square integrable and has Fourier coefficients an, bn, then∫ π

−π
[f(t)]2dt = 2πa20 + π

∞∑
n=1

(a2n + b2n)

• Fourier Half Range series, i.e fourier series expansion over the
interval (0, π). If f(x) is assumed as an even function over (−π, 0),
then all bn’s are 0. If f(x) is assumed as an odd function over
(−π, 0) , all an’s are 0.

an =
2

π

∫ π

0

f(x) cos(nx)dx

bn =
2

π

∫ π

0

f(x) sin(nx)dx

• Fourier half range series are very useful in specifying the bound-
ary condition for the heat equation. Since the boundary condi-
tion is specified for [0, L], depending on whether the terms in
the boundary condition are even or odd, an appropriate form of
Fourier half range series can be used.

• Solving heat equation by using Separation of Variables technique
where Laplace transformation can be used to solve the second
order ODE ,Half range Fourier series can be used to represent the
initial value condition.

• Laplace transformation can be used to solve PDEs. The symbol
t, where denotes time in PDEs that ranges from (0,∞) corre-
sponds neatly to the range of the Laplace transform.

• Use of Fourier and Laplace transform and such analytical meth-
ods have been surpassed by computers that be solve a PDE using
numerical methods. However analytical method gives the intu-
ition behind the solution that is not so obvious from the numerical
solution.


