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Chapter 1 : Introduction

e If the random variable Y has the Normal distribution with
mean j, and variance o2, its probability density function is

1 1 (y—p\
2702 exp[ 2( o? >
e The central chi-squared distribution with n degrees of
freedom is defined as the sum of squares of n independent random

variables Z1, ..., Z, each with the standard Normal distribution.
It is denoted by

flyspy o) =

X2 =% 7} ~x*(n):
=1

e Let Z1,...,7Z, be independent random variables each with the
distribution N(0,1) and let Y; = Z; + p;, where at least one of
w;’s is non-zero. Then the distribution of

VPN (T w) = 2P 42Y Zuu+ Y i

has larger mean n + A and larger variance 2n + 4\ than x?(n)
where A = > p?. This is called non-central chi-squared dis-
tribution with n degrees of freedom and non-centrality pa-
rameter \. It is denoted by x%(n, \).

e Suppose that the Y;’s are not necessary independent and the
vector y = [Y;,...,Y,] has the multivariate normal distribution
y ~ N(p, V) where the variance-covariance matrix V is non-
singular and its inverse is V~!. Then

X?=(y—p)" V7 iy —p)~x*n)

o If y ~ N(u, V) where the variance-covariance matrix V is non-
singular and its inverse is V™! then y” V~! y has the non-central
chi-squared distribution y?(n, ) where A = u? V=1 p.

o t-distribution
Z
(x2/n)'/?
where Z ~ N(0,1), X2 ~ x*(n) and Z and X? are independent.
This is denoted by T ~ t(n)

e The central F-distribution with n and m degrees of freedom
is defined as the ratio of two independent central chi-squared
random variables each divided by its degrees of freedom

X
n'm

where X7 ~ x%(n), X5 ~ x?(m) and X7 and X2 are independent.

This is denoted by F' ~ F(n,m)

e The non-central F-distribution is defined as the ratio of two
independent random variables, each divided by its degrees of free-
dom, where the numerator has a central chi-squared distribution
and the denominator has a central chi-squared distributoin, i.e.,

P X2 X3
n m

where X? ~ x2(n,\) with where A = p? V71 u | X2 ~ x%(m)
and X? and X3 are independent.

e The quadratic form y” Ay and the matrix A are said to be
positive definite if y” Ay > 0 whenever the elements of u are
not all zero. What this basically means is that none of the roots
of the quadratic form are complex. Thus the rank of the matrix
A is called the degrees of freedom of the quadratic form y7 Ay.

e Cochran’s theorem:

Suppose Yi,...,Y,, are independent random variables each with

the normal distribution N(0,0%). Let Q@ = > i, Y7, and let

Q1,...,Q, be quadratic forms in the Y;’s such that
RQ=Q1+...+Q

where @; has m; degrees of freedom (i = 1,...,k). Then
Q1,...,Q, are independent random variables and
Q1/0% ~ x%(m1),...,Qr/0? ~ x*(my) if and only if

mi+...+mg=mn

Chapter 3 : Exponential Family and
Generalized Linear Models

e Exponential family

f(y;0) = exp a(y)b(0) + ¢(0) + d(y)]

If a(y) = y , the distribution is said to be in canonical form and
b(0) is sometimes called the natural parameter of the distribu-
tion. If there are other parameters, in addition to the parameter
of interest 6, they are regarded as nuisance parameters.

e Mean and Variance
Bla(Y)] = —¢/(6) /¥ (6)

Varla(y)] = HOXD 2OV

e Score Statistic : Mean and Variance

_ di(®;y)

U(b) = =52 = aw)t'(0) + ¢ 6)

E[U] =0,Var[U] =3 = —E(U)

where J is Fischer’s information matrix

e GLM model has three components

e Response variable Y7, ...,Y,, are assumed to share the same
distribution from the exponential family, i.e., they have the
canonical form and depend on a single parameter 6;. So, the
nuisance parameters are not needed for estimation purpose.

e A set of parameters 3 and explanatory variables

e A monotone linke function g such that g(u;) = xI 8 where
ri = E(Y;)
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Chapter 4 : Estimation

e Method of Scoring

Uy (m—1)
- pr(m—1) =

y(m-1)
J(m—1)

o — e(mfl) (m—1)

e Standard error of 6 is \/1/J

e Method of Scoring for GLM

b = p(m=1) 4 [g(m—n} ! pm=1)

eJ =XT W X, where W is a diagonal matrix with

e — 1 i1’
" war(Y;) | On
9(wi) =ni =z B

o Tterative GLM Equation : XTWX b(™) = XTWz | where

P
_ O
= w4 () | 5
k=1 ¢

For Generalized Linear Models, MLE estimators are obtained by
an iterative weighted least squares procedure.

Chapter 5 : Inference

e If S is a statistic of interest, then

[s = E(s)]"V ™ [s = E(s)] ~ x*(p)

e Sampling Distribution of Score Statistic U ~ N(0,7)

U370 ~ x*(p)

e Sampling Distribution of MLE b ~ N(83,771).
e Wald Statisic
[b—B]"3(b)[b - B] ~ x*(p)

e log likelihood (ratio) statistic

D = 2[l(bmaz;y) — (b y)]

e Deviance ~ x2(m — p,v) where v is the non-centraility param-
eter, m is number of parameters in the saturated model and p is
the number of parameters in the model of interest

e Deviance of a binomial model

N
Yi Ny — Yq
D = 22[.%109 (y) + (n; — yi)log (n — >
i=1 ‘ ’

Yi

e Deviance of a Normal model

LN
D=—3 D (i — f)?
i=1

e Deviance of a Poisson model
D=2 {Z yilog (?) > (i - gi)] =20, log(o;/e;)

e We can test Hy against H; using the difference of deviance
statistics

AD =Dy — D, = 2[l(bmaaz§ y) - l(bOvy)] - Q[Z(bmaz; y) - l(bl; y)}
Do ~x*(N —q); D1 ~x*(N =p); AD ~x*(p —q)
e In some cases where there are nuisance parameters , we eliminate

nuisance parameters and form a new statistic. For example in the
case of Normally distributed response variable

_ Dy—Dy, Dy

F
p—q "N-—p

/ ~F(p—q,N —p)

Chapter 6 : Normal Linear Models

e Form Y7,...,Yy are independent random variables. The link
function is an indentity function, i.e., g(u;) = p

E(Y;) = pi =] B;Y; ~ N(pi,0°)
e Least Squares Estimate

b= (XTX)"'XTy

e Variance-covariance matrix of the vector of residuals é
Beelh)y=0?[I - X(XTX)1XT)

Hence standardized residuals are

T = 7&
(1 — hy)os
e Cooks distance
1
D; = 5(b — b)) "XTX (b by)

where b(;) denotes the vector of estimates b(;) , the estimate ob-
tained by omitting the ith observation.

e Variance Inflation Factor

1
VIF, = —
’ 1-RY,

where RZ., is the coefficient of determination obtained from re-
gressing the jth explanatory variable against all the other explana-
tory variables
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Chapter 7 : Binary Variables and Logis-
tic Regression

e Form : The proportion of successes, P; = Y;/n;, in each sub-
group can be modeled as a GLM.

e Linear Model

r=z3

e Probit
e (22)
o

e Logit

T

log (1) = By + Pax
-7

e Complementary Log Log / Extreme Value distribution

m=1—exp[—exp (S + Paz)]

e Deviance of a binomial model = Deviance gqturateq -Deviance
Fitted

D= 2§N:[yz-log <y> + (n; — yi)log (” - y)

i—1 % ni —Yi

D~ x*(N —p)
e Pearson chi-squared statistic

X2:Z(O_ee)2

e Pearson chi-squared residual

(Y = i)

Xy = — S
nkﬂ'k(l — 7Tk)

e Deviance Residual has an alternate form. Always use this for
model diagnostics

e Likelihood ratio chi-squared statistic

Devianceritieq — Deviance yrinimal

C =2[U(b) — l(bmin)] ~ X*(p— 1)

e psuedo R squared

W(w;y) — U7 y)
(75 y)
which represents the proportional improvement in the log-
likelihood function due to the terms in the model of interest,
compared to the minimal model.

Chapter 8 : Nominal and Ordinal Logis-
tic Regression

e Multinomial distribution can be regarded as the joint distribu-
tion of Poisson variables, conditional upon their sum n.

e Nominal logistic regression models are used when there is no
natural order among the response categories. One category is
chosen as reference

logit(m;) = log (W]) = IJTBJ Jforj=2,....J
1

P exp :L'JTBJ
J J
1+ > expalf,

e Chi-Squared Statistic

e Deviance

e Likelihood ratio chi-squared statistic

C = 2[U(b) = U(bmin)]

e Psuedo R?

l(bmin) — l(b)

2 _

e Ordinal logistic regression models are used when there is a nat-
ural order among the response categories.

eCumulative logit model :

7T1+...+7Tj

log ———M8M8M8™
gﬂj+1+...+7ﬂ]

:a?jT,Bj,forj:Z...,J

e Proportional odds model.

7T1+...+7Tj

lo
gﬂ—j+1+...+7rj

= foj +B1T1 4+ + Bp—1Tp—1

Chapter 9 : Count Data, Poisson Re-
gression and Log-Linear Models

e Form :

B(Y;) = p; = ni0; ;0; = expxl B; Y; ~ Poisson(;)

e Link function (logn; is the offset term)

log p; = logn; + z} B
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e Deviance of a Poisson model
Yi N
D=2 {Z yilog (y) - (i y)] =2 0; log(o;/e;)

e Log Linear Model

log E(Y;) = constant + z! 8

e Log Linear Saturated Model

log E(Y;) = p+ a; + Br + (aB)

e Log Linear Additive Model

log E(Y;) = p+ aj + B

e Log Linear Minimal Model

log E(Y;) = p



