## Chapter 1: Introduction

- If the random variable $Y$ has the Normal distribution with mean $\mu$, and variance $\sigma^{2}$, its probability density function is

$$
f\left(y ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{1}{2}\left(\frac{y-\mu}{\sigma^{2}}\right)^{2}\right]
$$

- The central chi-squared distribution with n degrees of freedom is defined as the sum of squares of n independent random variables $Z_{1}, \ldots, Z_{n}$ each with the standard Normal distribution. It is denoted by

$$
X^{2}=\sum_{i=1}^{n} Z_{i}^{2} \sim \chi^{2}(n) .
$$

- Let $Z_{1}, \ldots, Z_{n}$ be independent random variables each with the distribution $N(0,1)$ and let $Y_{i}=Z_{i}+\mu_{i}$, where at least one of $\mu_{i}$ 's is non-zero. Then the distribution of

$$
\sum Y_{i}^{2}=\sum\left(Z_{i}+\mu_{i}\right)^{2}=\sum Z_{i}^{2}+2 \sum Z_{i} \mu_{i}+\sum \mu_{i}^{2}
$$

has larger mean $n+\lambda$ and larger variance $2 n+4 \lambda$ than $\chi^{2}(n)$ where $\lambda=\sum \mu_{i}^{2}$. This is called non-central chi-squared distribution with n degrees of freedom and non-centrality parameter $\lambda$. It is denoted by $\chi^{2}(n, \lambda)$.

- Suppose that the $Y_{i}$ 's are not necessary independent and the vector $y=\left[Y_{i}, \ldots, Y_{n}\right]$ has the multivariate normal distribution $\mathbf{y} \sim \mathrm{N}(\boldsymbol{\mu}, \mathbf{V})$ where the variance-covariance matrix $\mathbf{V}$ is nonsingular and its inverse is $\mathrm{V}^{-1}$. Then

$$
X^{2}=(\boldsymbol{y}-\boldsymbol{\mu})^{T} \mathbf{V}^{-1}(\boldsymbol{y}-\boldsymbol{\mu}) \sim \chi^{2}(n)
$$

- If $\mathbf{y} \sim \mathrm{N}(\boldsymbol{\mu}, \mathbf{V})$ where the variance-covariance matrix $\mathbf{V}$ is nonsingular and its inverse is $\mathrm{V}^{-1}$ then $\boldsymbol{y}^{T} \mathrm{~V}^{-1} \boldsymbol{y}$ has the non-central chi-squared distribution $\chi^{2}(n, \lambda)$ where $\lambda=\boldsymbol{\mu}^{T} \mathrm{~V}^{-1} \boldsymbol{\mu}$.
- t-distribution

$$
T=\frac{Z}{\left(X^{2} / n\right)^{1 / 2}}
$$

where $Z \sim N(0,1), X^{2} \sim \chi^{2}(n)$ and $Z$ and $X^{2}$ are independent. This is denoted by $T \sim t(n)$

- The central $\mathbf{F}$-distribution with n and m degrees of freedom is defined as the ratio of two independent central chi-squared random variables each divided by its degrees of freedom

$$
F=\frac{X_{1}^{2}}{n} / \frac{X_{2}^{2}}{m}
$$

where $X_{1}^{2} \sim \chi^{2}(n), X_{2}^{2} \sim \chi^{2}(m)$ and $X_{1}^{2}$ and $X_{2}^{2}$ are independent. This is denoted by $F \sim F(n, m)$

- The non-central F-distribution is defined as the ratio of two independent random variables, each divided by its degrees of freedom, where the numerator has a central chi-squared distribution and the denominator has a central chi-squared distributoin, i.e.,

$$
F=\frac{X_{1}^{2}}{n} / \frac{X_{2}^{2}}{m}
$$

where $X_{1}^{2} \sim \chi^{2}(n, \lambda)$ with where $\lambda=\boldsymbol{\mu}^{T} \mathrm{~V}^{-1} \boldsymbol{\mu}, X_{2}^{2} \sim \chi^{2}(m)$ and $X_{1}^{2}$ and $X_{2}^{2}$ are independent.

- The quadratic form $\boldsymbol{y}^{T} \mathbf{A} \boldsymbol{y}$ and the matrix $\mathbf{A}$ are said to be positive definite if $\boldsymbol{y}^{T} \mathbf{A} \boldsymbol{y}>0$ whenever the elements of $u$ are not all zero. What this basically means is that none of the roots of the quadratic form are complex. Thus the rank of the matrix A is called the degrees of freedom of the quadratic form $\boldsymbol{y}^{T} \mathbf{A} \boldsymbol{y}$.
- Cochran's theorem:

Suppose $Y_{1}, \ldots, Y_{n}$ are independent random variables each with the normal distribution $N\left(0, \sigma^{2}\right)$. Let $Q=\sum_{i=1}^{n} Y_{i}^{2}$, and let $Q_{1}, \ldots, Q_{n}$ be quadratic forms in the $Y_{i}$ 's such that

$$
Q=Q_{1}+\ldots+Q_{k}
$$

where $Q_{i}$ has $m_{i}$ degrees of freedom $(i=1, \ldots, k)$. Then $Q_{1}, \ldots, Q_{n}$ are independent random variables and $Q_{1} / \sigma^{2} \sim \chi^{2}(m 1), \ldots, Q_{k} / \sigma^{2} \sim \chi^{2}\left(m_{k}\right)$ if and only if

$$
m_{1}+\ldots+m_{k}=n
$$

## Chapter 3 : Exponential Family and Generalized Linear Models

- Exponential family

$$
f(y ; \theta)=\exp [a(y) b(\theta)+c(\theta)+d(y)]
$$

If $a(y)=y$, the distribution is said to be in canonical form and $b(\theta)$ is sometimes called the natural parameter of the distribution. If there are other parameters, in addition to the parameter of interest $\theta$, they are regarded as nuisance parameters.

- Mean and Variance

$$
E[a(Y)]=-c^{\prime}(\theta) / b^{\prime}(\theta)
$$

$$
\operatorname{Var}[a(Y)]=\frac{b^{\prime \prime}(\theta) c^{\prime}(\theta)-c^{\prime \prime}(\theta) b^{\prime}(\theta)}{b^{\prime}(\theta)^{3}}
$$

- Score Statistic : Mean and Variance

$$
\begin{gathered}
U(\theta ; y)=\frac{d l(\theta ; y)}{d \theta}=a(y) b^{\prime}(\theta)+c^{\prime}(\theta) \\
E[U]=0, \operatorname{Var}[U]=\mathfrak{I}=-E\left(U^{\prime}\right)
\end{gathered}
$$

where $\mathfrak{I}$ is Fischer's information matrix

- GLM model has three components
- Response variable $Y_{1}, \ldots, Y_{n}$ are assumed to share the same distribution from the exponential family, i.e., they have the canonical form and depend on a single parameter $\theta_{i}$. So, the nuisance parameters are not needed for estimation purpose.
- A set of parameters $\boldsymbol{\beta}$ and explanatory variables
- A monotone linke function g such that $g\left(\mu_{i}\right)=\boldsymbol{x}_{\boldsymbol{i}}^{\boldsymbol{T}} \boldsymbol{\beta}$ where $\mu_{i}=E\left(Y_{i}\right)$


## Chapter 4 : Estimation

- Method of Scoring

$$
\theta^{m}=\theta^{(m-1)}-\frac{U^{(m-1)}}{U^{\prime(m-1)}}=\theta^{(m-1)}+\frac{U^{(m-1)}}{\mathfrak{I}^{(m-1)}}
$$

- Standard error of $\hat{\theta}$ is $\sqrt{1 / \mathfrak{I}}$
- Method of Scoring for GLM

$$
\boldsymbol{b}^{\boldsymbol{m}}=\boldsymbol{b}^{(m-1)}+\left[\mathfrak{I}^{(m-1)}\right]^{-1} U^{(m-1)}
$$

- $\mathfrak{I}=\mathrm{X}^{\mathrm{T}} \mathrm{W} \mathrm{X}$, where W is a diagonal matrix with

$$
\begin{gathered}
w_{i i}=\frac{1}{\operatorname{var}\left(Y_{i}\right)}\left[\frac{\partial \mu_{i}}{\partial \eta_{i}}\right]^{2} \\
g\left(\mu_{i}\right)=\eta_{i}=x_{i}^{T} \boldsymbol{\beta}
\end{gathered}
$$

- Iterative GLM Equation : $\mathrm{X}^{\mathrm{T}} \mathrm{WX} \mathrm{b}^{(\mathrm{m})}=\mathrm{X}^{\mathrm{T}} \mathrm{Wz}$, where

$$
z_{i}=\sum_{k=1}^{p} x_{i k} b_{k}^{(m-1)}+\left(y_{i}-\mu_{i}\right)\left[\frac{\partial \mu_{i}}{\partial \eta_{i}}\right]
$$

For Generalized Linear Models, MLE estimators are obtained by an iterative weighted least squares procedure.

## Chapter 5: Inference

- If $S$ is a statistic of interest, then

$$
[s-E(s)]^{T} V^{-1}[s-E(s)] \sim \chi^{2}(p)
$$

- Sampling Distribution of Score Statistic $U \sim N(0, \Im)$

$$
U^{T} \mathfrak{I}^{-1} U \sim \chi^{2}(p)
$$

- Sampling Distribution of MLE $\boldsymbol{b} \sim N\left(\boldsymbol{\beta}, \mathfrak{I}^{-1}\right)$.
- Wald Statisic

$$
[\boldsymbol{b}-\boldsymbol{\beta}]^{T} \mathfrak{I}(\boldsymbol{b})[\boldsymbol{b}-\boldsymbol{\beta}] \sim \chi^{2}(p)
$$

- log likelihood (ratio) statistic

$$
D=2\left[l\left(\boldsymbol{b}_{\max } ; \boldsymbol{y}\right)-l(\boldsymbol{b} ; \boldsymbol{y})\right]
$$

- Deviance $\sim \chi^{2}(m-p, v)$ where $v$ is the non-centraility parameter, $m$ is number of parameters in the saturated model and $p$ is the number of parameters in the model of interest
- Deviance of a binomial model

$$
D=2 \sum_{i=1}^{N}\left[y_{i} \log \left(\frac{y_{i}}{\hat{y}_{i}}\right)+\left(n_{i}-y_{i}\right) \log \left(\frac{n_{i}-y_{i}}{n_{i}-\hat{y}_{i}}\right)\right.
$$

- Deviance of a Normal model

$$
D=\frac{1}{\sigma^{2}} \sum_{i=1}^{N}\left(y_{i}-\hat{\mu_{i}}\right)^{2}
$$

- Deviance of a Poisson model

$$
D=2\left[\sum y_{i} \log \left(\frac{y_{i}}{\hat{y}_{i}}\right)-\sum\left(y_{i}-\hat{y_{i}}\right)\right]=2 \sum o_{i} \log \left(o_{i} / e_{i}\right)
$$

- We can test $H_{0}$ against $H_{1}$ using the difference of deviance statistics

$$
\begin{gathered}
\Delta D=D_{0}-D_{1}=2\left[l\left(b_{\max } ; y\right)-l\left(b_{0} ; y\right)\right]-2\left[l\left(b_{\max } ; y\right)-l\left(b_{1} ; y\right)\right] \\
D_{0} \sim \chi^{2}(N-q) ; D_{1} \sim \chi^{2}(N-p) ; \Delta D \sim \chi^{2}(p-q)
\end{gathered}
$$

- In some cases where there are nuisance parameters, we eliminate nuisance parameters and form a new statistic. For example in the case of Normally distributed response variable

$$
F=\frac{D_{0}-D_{1}}{p-q} / \frac{D_{1}}{N-p} \sim F(p-q, N-p)
$$

## Chapter 6 : Normal Linear Models

- Form $Y_{1}, \ldots, Y_{N}$ are independent random variables. The link function is an indentity function, i.e., $g\left(\mu_{i}\right)=\mu_{i}$

$$
E\left(Y_{i}\right)=\mu_{i}=x_{i}^{T} \beta ; Y_{i} \sim N\left(\mu_{i}, \sigma^{2}\right)
$$

- Least Squares Estimate

$$
b=\left(X^{T} X\right)^{-1} X^{T} y
$$

- Variance-covariance matrix of the vector of residuals $\hat{\boldsymbol{e}}$

$$
E\left(\hat{e} \hat{e}^{T}\right)=\sigma^{2}\left[I-X\left(X^{T} X\right)^{-1} X^{T}\right]
$$

Hence standardized residuals are

$$
r_{i}=\frac{\hat{e}_{i}}{\hat{\sigma}\left(1-h_{i i}\right)^{0.5}}
$$

- Cooks distance

$$
D_{i}=\frac{1}{p}\left(\boldsymbol{b}-\boldsymbol{b}_{(i)}\right)^{T} X^{T} X\left(\boldsymbol{b}-\boldsymbol{b}_{(i)}\right)
$$

where $\boldsymbol{b}_{(i)}$ denotes the vector of estimates $b_{(i)}$, the estimate obtained by omitting the ith observation.

- Variance Inflation Factor

$$
V I F_{j}=\frac{1}{1-R_{(j)}^{2}}
$$

where $R_{(j)}^{2}$ is the coefficient of determination obtained from regressing the jth explanatory variable against all the other explanatory variables

## Chapter 7 : Binary Variables and Logistic Regression

- Form : The proportion of successes, $P_{i}=Y_{i} / n_{i}$, in each subgroup can be modeled as a GLM.

$$
E\left(Y_{i}\right)=n_{i} \pi_{i} ; E\left(P_{i}\right)=\pi_{i}
$$

- Linear Model

$$
\pi=\boldsymbol{x}^{T} \boldsymbol{\beta}
$$

- Probit

$$
\pi=\Phi\left(\frac{x-\mu}{\sigma}\right)
$$

- Logit

$$
\log \left(\frac{\pi}{1-\pi}\right)=\beta_{1}+\beta_{2} x
$$

- Complementary Log Log / Extreme Value distribution

$$
\pi=1-\exp \left[-\exp \left(\beta_{1}+\beta_{2} x\right)\right]
$$

- Deviance of a binomial model $=$ Deviance Saturated -Deviance Fitted

$$
\begin{gathered}
D=2 \sum_{i=1}^{N}\left[y_{i} \log \left(\frac{y_{i}}{\hat{y_{i}}}\right)+\left(n_{i}-y_{i}\right) \log \left(\frac{n_{i}-y_{i}}{n_{i}-\hat{y}_{i}}\right)\right. \\
D \sim \chi^{2}(N-p)
\end{gathered}
$$

- Pearson chi-squared statistic

$$
X^{2}=\sum \frac{(o-e)^{2}}{e}
$$

- Pearson chi-squared residual

$$
X_{k}=\frac{\left(y_{k}-n_{k} \hat{\pi}_{k}\right)}{\sqrt{n_{k} \hat{\pi}_{k}\left(1-\hat{\pi}_{k}\right)}}
$$

- Deviance Residual has an alternate form. Always use this for model diagnostics
- Likelihood ratio chi-squared statistic

Deviance Fitted - Deviance Minimal

$$
C=2\left[l(\boldsymbol{b})-l\left(\boldsymbol{b}_{\min }\right)\right] \sim \chi^{2}(p-1)
$$

- psuedo R squared

$$
\frac{l(\tilde{\pi} ; y)-l(\hat{\pi} ; y)}{l(\tilde{\pi} ; y)}
$$

which represents the proportional improvement in the loglikelihood function due to the terms in the model of interest, compared to the minimal model.

## Chapter 8 : Nominal and Ordinal Logistic Regression

- Multinomial distribution can be regarded as the joint distribution of Poisson variables, conditional upon their sum n.
- Nominal logistic regression models are used when there is no natural order among the response categories. One category is chosen as reference

$$
\operatorname{logit}\left(\pi_{j}\right)=\log \left(\frac{\pi_{j}}{\pi_{1}}\right)=x_{j}^{T} \beta_{j}, \text { for } j=2, \ldots, J
$$

$$
\hat{\pi}_{j}=\frac{\exp x_{j}^{T} \beta_{j}}{1+\sum_{j=2}^{J} \exp x_{j}^{T} \beta_{j}}
$$

- Chi-Squared Statistic

$$
X^{2}=\sum_{i=1}^{N} \frac{\left(o_{i}-e_{i}\right)^{2}}{e_{i}}
$$

- Deviance

$$
D=2\left[l\left(b_{\max }\right)-l(b)\right]
$$

- Likelihood ratio chi-squared statistic

$$
C=2\left[l(b)-l\left(b_{\min }\right)\right]
$$

- Psuedo $R^{2}$

$$
R^{2}=\frac{l\left(b_{\min }\right)-l(b)}{l\left(b_{\min }\right)}
$$

- Ordinal logistic regression models are used when there is a natural order among the response categories.
- Cumulative logit model :

$$
\log \frac{\pi_{1}+\ldots+\pi_{j}}{\pi_{j+1}+\ldots+\pi_{J}}=x_{j}^{T} \beta_{j}, \text { for } j=2, \ldots, J
$$

- Proportional odds model.

$$
\log \frac{\pi_{1}+\ldots+\pi_{j}}{\pi_{j+1}+\ldots+\pi_{J}}=\beta_{0 j}+\beta_{1} x_{1}+\cdots+\beta_{p-1} x_{p-1}
$$

## Chapter 9 : Count Data, Poisson Regression and Log-Linear Models

- Form :

$$
E\left(Y_{i}\right)=\mu_{i}=n_{i} \theta_{i} ; \theta_{i}=\exp x_{i}^{T} \beta ; Y_{i} \sim \operatorname{Poisson}\left(\mu_{i}\right)
$$

- Link function $\left(\log n_{i}\right.$ is the offset term)

$$
\log \mu_{i}=\log n_{i}+x_{i}^{T} \beta
$$

- Deviance of a Poisson model

$$
D=2\left[\sum y_{i} \log \left(\frac{y_{i}}{\hat{y}_{i}}\right)-\sum\left(y_{i}-\hat{y}_{i}\right)\right]=2 \sum o_{i} \log \left(o_{i} / e_{i}\right)
$$

- Log Linear Model

$$
\log E\left(Y_{i}\right)=\text { constant }+x_{i}^{T} \beta
$$

- Log Linear Saturated Model

$$
\log E\left(Y_{i}\right)=\mu+\alpha_{j}+\beta_{k}+(\alpha \beta)_{j k}
$$

- Log Linear Additive Model

$$
\log E\left(Y_{i}\right)=\mu+\alpha_{j}+\beta_{k}
$$

- Log Linear Minimal Model

$$
\log E\left(Y_{i}\right)=\mu
$$

