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Chapter 1 : Introduction

• If the random variable Y has the Normal distribution with
mean µ, and variance σ2, its probability density function is

f(y;µ, σ2) =
1√

2πσ2
exp

[
−1

2

(
y − µ
σ2

)2
]

• The central chi-squared distribution with n degrees of
freedom is defined as the sum of squares of n independent random
variables Z1, . . . , Zn each with the standard Normal distribution.
It is denoted by

X2 =

n∑
i=1

Z2
i ∼ χ2(n)·

• Let Z1, . . . , Zn be independent random variables each with the
distribution N(0, 1) and let Yi = Zi + µi, where at least one of
µi’s is non-zero. Then the distribution of∑

Y 2
i =

∑
(Zi + µi)

2 =
∑

Z2
i + 2

∑
Ziµi +

∑
µ2
i

has larger mean n + λ and larger variance 2n + 4λ than χ2(n)
where λ =

∑
µ2
i . This is called non-central chi-squared dis-

tribution with n degrees of freedom and non-centrality pa-
rameter λ. It is denoted by χ2(n, λ).

• Suppose that the Yi’s are not necessary independent and the
vector y = [Yi, . . . , Yn] has the multivariate normal distribution
y ∼ N(µ, V) where the variance-covariance matrix V is non-
singular and its inverse is V−1. Then

X2 = (y − µ)T V−1(y − µ) ∼ χ2(n)·

• If y ∼ N(µ, V) where the variance-covariance matrix V is non-
singular and its inverse is V−1 then yT V−1 y has the non-central
chi-squared distribution χ2(n, λ) where λ = µT V−1 µ.

• t-distribution

T =
Z

(X2/n)
1/2

where Z ∼ N(0, 1), X2 ∼ χ2(n) and Z and X2 are independent.
This is denoted by T ∼ t(n)

• The central F-distribution with n and m degrees of freedom
is defined as the ratio of two independent central chi-squared
random variables each divided by its degrees of freedom

F =
X2

1

n
/
X2

2

m

where X2
1 ∼ χ2(n), X2

2 ∼ χ2(m) and X2
1 and X2

2 are independent.
This is denoted by F ∼ F (n,m)

• The non-central F-distribution is defined as the ratio of two
independent random variables, each divided by its degrees of free-
dom, where the numerator has a central chi-squared distribution
and the denominator has a central chi-squared distributoin, i.e.,

F =
X2

1

n
/
X2

2

m

where X2
1 ∼ χ2(n, λ) with where λ = µT V−1 µ , X2

2 ∼ χ2(m)
and X2

1 and X2
2 are independent.

• The quadratic form yTAy and the matrix A are said to be
positive definite if yTAy > 0 whenever the elements of u are
not all zero. What this basically means is that none of the roots
of the quadratic form are complex. Thus the rank of the matrix
A is called the degrees of freedom of the quadratic form yTAy.

• Cochran’s theorem:
Suppose Y1,. . . ,Yn are independent random variables each with
the normal distribution N(0, σ2). Let Q =

∑n
i=1 Y

2
i , and let

Q1,. . . ,Qn be quadratic forms in the Yi’s such that

Q = Q1 + . . .+Qk

where Qi has mi degrees of freedom (i = 1, . . . , k). Then
Q1,. . . ,Qn are independent random variables and
Q1/σ

2 ∼ χ2(m1), . . . , Qk/σ
2 ∼ χ2(mk) if and only if

m1 + . . .+mk = n

Chapter 3 : Exponential Family and
Generalized Linear Models

• Exponential family

f(y; θ) = exp [a(y)b(θ) + c(θ) + d(y)]

If a(y) = y , the distribution is said to be in canonical form and
b(θ) is sometimes called the natural parameter of the distribu-
tion. If there are other parameters, in addition to the parameter
of interest θ, they are regarded as nuisance parameters.

• Mean and Variance

E[a(Y )] = −c′(θ)/b′(θ)

V ar[a(Y )] =
b′′(θ)c′(θ)− c′′(θ)b′(θ)

b′(θ)3

• Score Statistic : Mean and Variance

U(θ; y) =
dl(θ; y)

dθ
= a(y)b′(θ) + c′(θ)

E[U ] = 0, V ar[U ] = I = −E(U ′)

where I is Fischer’s information matrix

• GLM model has three components

• Response variable Y1, . . . , Yn are assumed to share the same
distribution from the exponential family, i.e., they have the
canonical form and depend on a single parameter θi. So, the
nuisance parameters are not needed for estimation purpose.

• A set of parameters β and explanatory variables
• A monotone linke function g such that g(µi) = xT

i β where
µi = E(Yi)
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Chapter 4 : Estimation

• Method of Scoring

θm = θ(m−1) − U (m−1)

U ′(m−1)
= θ(m−1) +

U (m−1)

I(m−1)

• Standard error of θ̂ is
√

1/I

• Method of Scoring for GLM

bm = b(m−1) +
[
I(m−1)

]−1
U (m−1)

• I = XT W X , where W is a diagonal matrix with

wii =
1

var(Yi)

[
∂µi

∂ηi

]2
g(µi) = ηi = xTi β

• Iterative GLM Equation : XTWX b(m) = XTWz , where

zi =

p∑
k=1

xikb
(m−1)
k + (yi − µi)

[
∂µi

∂ηi

]
For Generalized Linear Models, MLE estimators are obtained by
an iterative weighted least squares procedure.

Chapter 5 : Inference

• If S is a statistic of interest, then

[s− E(s)]TV −1[s− E(s)] ∼ χ2(p)

• Sampling Distribution of Score Statistic U ∼ N(0, I)

UTI−1U ∼ χ2(p)

• Sampling Distribution of MLE b ∼ N(β, I−1).

• Wald Statisic

[b− β]TI(b)[b− β] ∼ χ2(p)

• log likelihood (ratio) statistic

D = 2[l(bmax;y)− l(b;y)]

• Deviance ∼ χ2(m − p, v) where v is the non-centraility param-
eter, m is number of parameters in the saturated model and p is
the number of parameters in the model of interest

• Deviance of a binomial model

D = 2

N∑
i=1

[yilog

(
yi
ŷi

)
+ (ni − yi)log

(
ni − yi
ni − ŷi

)

• Deviance of a Normal model

D =
1

σ2

N∑
i=1

(yi − µ̂i)
2

• Deviance of a Poisson model

D = 2

[∑
yilog

(
yi
ŷi

)
−
∑

(yi − ŷi)
]

= 2
∑

oi log(oi/ei)

• We can test H0 against H1 using the difference of deviance
statistics

∆D = D0 −D1 = 2[l(bmax; y)− l(b0; y)]− 2[l(bmax; y)− l(b1; y)]

D0 ∼ χ2(N − q); D1 ∼ χ2(N − p); ∆D ∼ χ2(p− q)

• In some cases where there are nuisance parameters , we eliminate
nuisance parameters and form a new statistic. For example in the
case of Normally distributed response variable

F =
D0 −D1

p− q
/
D1

N − p
∼ F (p− q,N − p)

Chapter 6 : Normal Linear Models

• Form Y1, . . . , YN are independent random variables. The link
function is an indentity function, i.e., g(µi) = µi

E(Yi) = µi = xTi β ;Yi ∼ N(µi, σ
2)

• Least Squares Estimate

b = (XTX)−1XT y

• Variance-covariance matrix of the vector of residuals ê

E(ê êT ) = σ2 [I −X(XTX)−1XT ]

Hence standardized residuals are

ri =
êi

σ̂(1− hii)0.5

• Cooks distance

Di =
1

p
(b− b(i))TXTX(b− b(i))

where b(i) denotes the vector of estimates b(i) , the estimate ob-
tained by omitting the ith observation.

• Variance Inflation Factor

V IFj =
1

1−R2
(j)

where R2
(j) is the coefficient of determination obtained from re-

gressing the jth explanatory variable against all the other explana-
tory variables
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Chapter 7 : Binary Variables and Logis-
tic Regression

• Form : The proportion of successes, Pi = Yi/ni, in each sub-
group can be modeled as a GLM.

E(Yi) = niπi; E(Pi) = πi

• Linear Model
π = xTβ

• Probit

π = Φ

(
x− µ
σ

)

• Logit

log

(
π

1− π

)
= β1 + β2x

• Complementary Log Log / Extreme Value distribution

π = 1− exp [− exp (β1 + β2x)]

• Deviance of a binomial model = Deviance Saturated -Deviance

Fitted

D = 2

N∑
i=1

[yilog

(
yi
ŷi

)
+ (ni − yi)log

(
ni − yi
ni − ŷi

)
D ∼ χ2(N − p)

• Pearson chi-squared statistic

X2 =
∑ (o− e)2

e

• Pearson chi-squared residual

Xk =
(yk − nkπ̂k)√
nkπ̂k(1− π̂k)

• Deviance Residual has an alternate form. Always use this for
model diagnostics

• Likelihood ratio chi-squared statistic

DevianceFitted −DevianceMinimal

C = 2[l(b)− l(bmin)] ∼ χ2(p− 1)

• psuedo R squared

l(π̃; y)− l(π̂; y)

l(π̃; y)

which represents the proportional improvement in the log-
likelihood function due to the terms in the model of interest,
compared to the minimal model.

Chapter 8 : Nominal and Ordinal Logis-
tic Regression

• Multinomial distribution can be regarded as the joint distribu-
tion of Poisson variables, conditional upon their sum n.

• Nominal logistic regression models are used when there is no
natural order among the response categories. One category is
chosen as reference

logit(πj) = log

(
πj
π1

)
= xTj βj , for j = 2, . . . , J

π̂j =
expxTj βj

1 +
∑J

j=2 expxTj βj

• Chi-Squared Statistic

X2 =

N∑
i=1

(oi − ei)2

ei

• Deviance
D = 2[l(bmax)− l(b)]

• Likelihood ratio chi-squared statistic

C = 2[l(b)− l(bmin)]

• Psuedo R2

R2 =
l(bmin)− l(b)

l(bmin)

• Ordinal logistic regression models are used when there is a nat-
ural order among the response categories.

•Cumulative logit model :

log
π1 + . . .+ πj
πj+1 + . . .+ πJ

= xTj βj , for j = 2, . . . , J

• Proportional odds model.

log
π1 + . . .+ πj
πj+1 + . . .+ πJ

= β0j + β1x1 + · · ·+ βp−1xp−1

Chapter 9 : Count Data, Poisson Re-
gression and Log-Linear Models

• Form :

E(Yi) = µi = niθi ; θi = expxTi β ; Yi ∼ Poisson(µi)

• Link function (log ni is the offset term)

logµi = log ni + xTi β
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• Deviance of a Poisson model

D = 2

[∑
yilog

(
yi
ŷi

)
−
∑

(yi − ŷi)
]

= 2
∑

oi log(oi/ei)

• Log Linear Model

logE(Yi) = constant+ xTi β

• Log Linear Saturated Model

logE(Yi) = µ+ αj + βk + (αβ)jk

• Log Linear Additive Model

logE(Yi) = µ+ αj + βk

• Log Linear Minimal Model

logE(Yi) = µ


